Differences in the serum metabolic profile to identify potential biomarkers for cyanotic versus acyanotic heart disease

Perfusion ◽  
2021 ◽  
pp. 026765912110425
Author(s):  
Suman Vimal ◽  
Renuka Ranjan ◽  
Surabhi Yadav ◽  
Gauranga Majumdar ◽  
Balraj Mittal ◽  
...  

Background: Growth retardation, malnutrition, and failure to thrive are some of the consequences associated with congenital heart diseases. Several metabolic factors such as hypoxia, anoxia, and several genetic factors are believed to alter the energetics of the heart. Timely diagnosis and patient management is one of the major challenges faced by the clinicians in understanding the disease and provide better treatment options. Metabolic profiling has shown to be potential diagnostic tool to understand the disease. Objective: The present experiment was designed as a single center observational pilot study to classify and create diagnostic metabolic signatures associated with the energetics of congenital heart disease in cyanotic and acyanotic groups. Methods: Metabolic sera profiles were obtained from 35 patients with cyanotic congenital heart disease (TOF) and 23 patients with acyanotic congenital heart disease (ASD and VSD) using high resolution 1D 1H NMR spectra. Univariate and multivariate statistical analysis were performed to classify particular metabolic disorders associated with cyanotic and acyanotic heart disease. Results: The results show dysregulations in several metabolites in cyanotic CHD patients versus acyanotic CHD patients. The discriminatory metabolites were further analyzed with area under receiver operating characteristic (AUROC) curve and identified four metabolic entities (i.e. mannose, hydroxyacetone, myoinositol, and creatinine) which could differentiate cyanotic CHDs from acyanotic CHDs with higher specificity. Conclusion: An untargeted metabolic approach proved to be helpful for the detection and distinction of disease-causing metabolites in cyanotic patients from acyanotic ones and can be useful for designing better and personalized treatment protocol.

2017 ◽  
Vol 57 (3) ◽  
pp. 160
Author(s):  
Dewi Awaliyah Ulfah ◽  
Endang Dewi Lestari ◽  
Harsono Salimo ◽  
Sri Lilijanti Widjaya ◽  
Bagus Artiko

Background Congenital heart disease (CHD) can lead to failure to thrive. Decreased energy intake, malabsorption, increased energy requirements, and decreased growth factors (growth hormone/insulin-like growth factor 1 axis) are related to malnutrition and growth retardation in children with CHD.Objective Tocompare the impact of cyanotic and acyanotic CHD on children’s growth velocity (using the 2009 WHO growth velocity chart).Methods This study was conducted in patients less than 24 months of age with CHD in the Pediatric Cardiology Specialist Unit Dr. Moewardi Hospital, Surakarta, Central Java, from December 2016 to February 2017. Subjects’ weights were evaluated at the beginning of the study and two months later. Data were compared to the WHO Growth Velocity chart and analyzed by Chi-square test.Results Of 46 patients with CHD (23 cyanotic, 23 acyanotic), 10 patients (21.7%) were identified with failure to thrive, i.e., < 5th percentile. Significantly more children with acyanotic CHD were in the >5th percentile for growth velocity than were children with cyanotic CHD (OR 5.600; 95%CI 1.038 to 30.204; P=0.032). Acute upper respiratory tract infection was not significantly associated with growth velocity (OR 2.273; 95%CI 0.545 to 9.479; P=0.253).Conclusion Children with cyanotic CHD have 5.6 times higher risk of failure to thrive than children with acyanotic CHD.


2021 ◽  
Vol 14 (1) ◽  
pp. 81-94
Author(s):  
Suman Vimal ◽  
Surendra Kumar Agarwal ◽  
Surabhi Yadav ◽  
Gauranga Majumdar ◽  
Balraj Mittal ◽  
...  

Congenital heart disease (CHD) is one of the most important causes of the death of children and young adults. Most of the patients do not survive past their teen years. This occurs either due to delay in diagnosis or no diagnosis at all. In recent times, several studies have shown the importance of biomarkers in the prediction of such defects. These biomarkers give the real time snapshot of the on going processes inside the cells and can significantly support the diagnosis of CHD. The present experiment was designed as an observational single centre pilot study to identify and establish the diagnostic metabolic signatures associated with the congenital heart diseases. Metabolic profiles of sera collected from 35 cyanotic congenital heart disease patients and 15 controls were obtained using high-resolution 1D 1H CPMG and NMR spectra. The metabolic profiles were compared using multivariate statistical analysis to identify the disease specific metabolic disturbances associated with cyanotic heart disease. The results show perturbation in several metabolites in cyanotic CHD patients versus controls. The discriminatory metabolites were further analysedwith area under receiver operating characteristic (AUROC) curve and identified five metabolic entities (i.e.valine, glucose, glutamine, creatinineand PUFA) which could differentiate cyanotic CHDs from controls with higher specificity.In conclusion, untargeted metabolic approach proved to be helpful in identifying and differentiating disease causing metabolites in cyanotic cases from controls.


2017 ◽  
Vol 12 (4) ◽  
pp. 137-142
Author(s):  
Prashant Shah ◽  
Kunjang Sherpa ◽  
Naveen Kumar Pandey ◽  
Bhawani Manandhar ◽  
Sahadeb Prasad Dhungana

Background & Objectives: Congenital heart diseases are neglected especially in world’s poorest nations and appear to be ignored and unexplored dimension of health. The exact prevalence and spectrum of congenital heart diseases in Nepal is largely unknown. The aim of this study was to describe the local experience on the magnitude and the pattern of congenital heart disease in order to increase the awareness of the public and health policy makers on its burden in Nepal.Materials & Methods: This is an observational hospital based study carried out in a tertiary care hospital in Eastern Nepal. The duration of this study was from April 2015 to July 2016. The echocardiography reports of all patients clinically suspected of having congenital heart disease were retrieved, and their diagnostic details were extracted. Only patients of day one of life to 14 years of age were included. Congenital heart diseases like bicuspid aortic valve, mitral valve prolapse and various inherited cardiomyopathies were excluded.Results: A total of 330 echocardiograms were performed for clinically suspected congenital heart disease.  The mean age of study population was 22.31±34.08 months with male to female ratio of 1.2:1. 23% of clinically suspected congenital heart disease cases turned out to have normal echocardiography. Acyanotic congenital heart disease was most common (81.5%) followed by cyanotic congenital heart disease (14.2%) and obstructive congenital heart disease (4.3%). Atrial septal defect was found to be the most common form of acyanotic congenital heart disease (52%) which was followed by ventricular septal defect (28.8%) and patent ductus arteriosus (14.8%). Tetralogy of Fallot and double outlet right ventricle were the most common form of cyanotic CHD representing 44.4% of all cyanotic patients. Pulmonary stenosis was the most common obstructive congenital heart disease observed in this study population (63.6%). Rarer entities, like d-transposition of great arteries, congenitally corrected transposition of great arteries, various types of total anomalous pulmonary venous drainage, double inlet left ventricle, interrupted aortic arch, Shone complex, etc. were also observed, however represented only the minority of the study population.Conclusion: The spectrum of congenital heart disease seen in this study very likely and only represents the tip of the iceberg. Public awareness programmes and training of health care personnel needs to be emphasized in order to facilitate its early diagnosis and improve its outcome.


2021 ◽  
Vol 11 (6) ◽  
pp. 562
Author(s):  
Olga María Diz ◽  
Rocio Toro ◽  
Sergi Cesar ◽  
Olga Gomez ◽  
Georgia Sarquella-Brugada ◽  
...  

Congenital heart disease is a group of pathologies characterized by structural malformations of the heart or great vessels. These alterations occur during the embryonic period and are the most frequently observed severe congenital malformations, the main cause of neonatal mortality due to malformation, and the second most frequent congenital malformations overall after malformations of the central nervous system. The severity of different types of congenital heart disease varies depending on the combination of associated anatomical defects. The causes of these malformations are usually considered multifactorial, but genetic variants play a key role. Currently, use of high-throughput genetic technologies allows identification of pathogenic aneuploidies, deletions/duplications of large segments, as well as rare single nucleotide variants. The high incidence of congenital heart disease as well as the associated complications makes it necessary to establish a diagnosis as early as possible to adopt the most appropriate measures in a personalized approach. In this review, we provide an exhaustive update of the genetic bases of the most frequent congenital heart diseases as well as other syndromes associated with congenital heart defects, and how genetic data can be translated to clinical practice in a personalized approach.


1983 ◽  
Vol 92 (4) ◽  
pp. 387-390 ◽  
Author(s):  
Norman T. Berlinger ◽  
John Foker ◽  
Charles Long ◽  
Russell V. Lucas

Children with acyanotic congenital heart disease frequently develop respiratory difficulties such as atelectasis, pneumonia, or infantile lobar emphysema. In some cases, the cause of the respiratory difficulty is compression of the tracheobronchial tree by hypertensive dilated pulmonary arteries, since this type of heart disease frequently demonstrates large left-to-right intracardiac shunts. Sites of predilection for compression include the left main bronchus, the left upper lobe bronchus, the junction of the right bronchus intermedius and right middle lobe bronchus, and the left side of the distal trachea. Cardiac anomalies which predispose to this type of compression include ventricular septal defect, patent ductus arteriosus, interruption of the aortic arch, and tetralogy of Fallot. Pulmonary arteriopexy may relieve the tracheobronchial compression.


2014 ◽  
Vol 32 (2) ◽  
pp. 159-163 ◽  
Author(s):  
Felipe Alves Mourato ◽  
Lúcia Roberta R. Villachan ◽  
Sandra da Silva Mattos

OBJECTIVE:To determine the frequence and profile of congenital heart defects in Down syndrome patients referred to a pediatric cardiologic center, considering the age of referral, gender, type of heart disease diagnosed by transthoracic echocardiography and its association with pulmonary hypertension at the initial diagnosis.METHODS:Cross-sectional study with retrospective data collection of 138 patients with Down syndrome from a total of 17,873 records. Descriptive analysis of the data was performed, using Epi-Info version 7.RESULTS: Among the 138 patients with Down syndrome, females prevailed (56.1%) and 112 (81.2%) were diagnosed with congenital heart disease. The most common lesion was ostium secundum atrial septal defect, present in 51.8%, followed by atrioventricular septal defect, in 46.4%. Ventricular septal defects were present in 27.7%, while tetralogy of Fallot represented 6.3% of the cases. Other cardiac malformations corresponded to 12.5%. Pulmonary hypertension was associated with 37.5% of the heart diseases. Only 35.5% of the patients were referred before six months of age.CONCLUSIONS: The low percentage of referral until six months of age highlights the need for a better tracking of patients with Down syndrome in the context of congenital heart disease, due to the high frequency and progression of pulmonary hypertension.


Sign in / Sign up

Export Citation Format

Share Document