An Effective Fire-Protective Composition for Polymeric Materials, Derived from Waste Products of the Butter and Fat Industry

2001 ◽  
Vol 28 (3) ◽  
pp. 40-41
Author(s):  
T.M. Mirkamilov ◽  
B.A. Mukhamedgaliev
2019 ◽  
Vol 6 (4) ◽  
Author(s):  
Dmitry Svetlov ◽  
Alexander Kachalov

The research results in the field of microbiological corrosion of building materials of domestic and foreign experts are presented. It is shown that microorganisms cause corrosion of concrete on cement and other binding metal and other materials. Metals in the order of decreasing the rate of biocorrosion are arranged in the following row: aluminum, mild steel, zinc, brass, copper, stainless steel. Concrete, due to its high surface activity, is capable of adsorbing a wide variety of substances, including microorganisms: bacteria and mycelial fungi. Among bacteria, nitrifying agents, thionic, iron and silicate bacteria and others participate in the corrosion of cement concrete (mainly due to their acid secretions). According to the data of a number of authors, on the surface of stone building materials mycelial fungi of the genera Penicillium, Aspergillus, Trichoderma, Cephalosporium prevail. Biodeterioration in this case mainly comes down to the disruption of cohesion of constituent components as a result of exposure to mineral or organic acids, as well as enzymes and due to chemical reactions between the cement stone of solutions and concretes and the waste products of microorganisms. The compositions of bituminous composites at various ratios of the materials used without inclusion in the composition of fungicides showed non-fungal resistance and non-fungicide. Comparison of concrete on gypsum and phosphogypsum binders showed that samples on a phosphogypsum binder overgrow microorganisms somewhat more, wood materials are subject to significant biodeterioration at high humidity. Biodegradation of wood occurs mainly due to the use of mushrooms as food sources of cellulose, lignin and other components. Synthetic polymers and materials based on them are significantly superior to natural polymers in biostability. However, under certain operating conditions, they are damaged by biological agents. Biological damage to plastics, as well as other materials, occurs simultaneously with their aging under the influence of external physical and chemical factors (ultraviolet radiation, water, temperature changes, etc.). Additives that are usually always present in polymer compositions (fillers, plasticizers, stabilizers, antioxidants, modifiers, pigments, etc.) significantly affect the biostability of polymeric materials. One of the effective ways to increase the biostability of composite building materials is the introduction of fungicidal additives in their composition. It is also shown that of great importance in increasing the durability and increasing the life of some building structures (metal products, communications, underground pipelines and some others) is their protection by paint and varnish coatings.


2021 ◽  
pp. 64-68
Author(s):  
Михаил Григорьевич Балыхин ◽  
Изабелла Сергеевна Тверитникова ◽  
Ирина Анатольевна Кирш ◽  
Ольга Анатольевна Банникова ◽  
Ольга Владимировна Безнаева ◽  
...  

С каждым годом упаковки производится все больше и больше. В настоящее время все больше актуализируется проблема утилизации полимерных отходов. Одним из перспективных направлений в области утилизации упаковки является создание биоразлагаемых полимерных материалов. Главное их преимущество - это возможность использования в качестве наполнителей сырья постоянно воспроизводимых в природе веществ, сельскохозяйственных продуктов и отходов их производства, содержащих крахмалы, в отличие от нефти, угля и газа, имеющих ограниченный запас в природе. Анализ рынка биоразлагаемых полимерных материалов показал, что сегодня наибольший спрос имеет сегмент так называемых «дешевых» композиций. Поэтому целью работы является создание биодеградируемых полимерных композиций на основе синтетического полимера и природных материалов. В качестве объектов были выбраны синтетический материал - полиэтилен, природные вещества - кукурузный и картофельный крахмал, а в качестве модификатора неионогенное поверхностно-активное вещество, являющееся инициатором биоразложения. В работе были проведены исследования на реологические свойства и деформационно-прочностные характеристики, на способность исследуемых композиций к набуханию и биодеградации. В ходе работы были получены полимерные композиции, модифицированные природным материалом в количестве 20 % и 30 %, а также композиции с введением крахмала 20 % и 30 % с содержанием 2 % неионогенного поверхностно-активного вещества. Проведя исследования, можно отметить, что введение неионогенного поверхностно-активного вещества в крахмалонаполненные полимерные композиции улучшает реологические характеристики и повышает их прочностные характеристики; полученные модифицированные крахмалонаполненные композиции обладают повышенной биоразлагаемостью по сравнению с контрольными образцами. Every year more and more packaging is produced. Currently, the problem of recycling polymer waste is becoming more and more urgent. One of the promising directions in the field of packaging recycling is the creation of biodegradable polymeric materials. The main advantage of using biodegradable polymer compositions is the ability to use as fillers, raw materials constantly reproduced in nature, substances, agricultural products and waste products containing starches, in contrast to oil, coal and gas, which have a limited supply in nature. Analysis of the market for biodegradable polymer materials showed that today the segment of so-called «cheap» compositions is in greatest demand. Therefore, the aim of this work is to create biodegradable polymer compositions based on synthetic polymer and natural materials. The objects were selected: a synthetic material - polyethylene, natural substances - corn and potato starch, and as a modifier a nonionic surfactant that initiates biodegradation. In this work, the following studies were carried out on rheological properties and deformation-strength characteristics, on the ability of the studied compositions to swell and biodegradation. In the course of the work, polymer compositions were obtained modified with natural material in an amount of 20 % and 30 %, as well as compositions with the introduction of starch 20 % and 30 % with a content of 2 % nonionic surfactant. After conducting research, it can be noted that when a nonionic surfactant is introduced into starch-filled polymer compositions, it improves rheological characteristics and increases their strength characteristics; the obtained modified starch-filled compositions have increased biodegradability in comparison with the control samples.


Author(s):  
Oleg Gaidamak ◽  
Viktor Matviychuk ◽  
Yulia Kucherenko

This article is devoted to the equipment for gas-dynamic spraying in order to simplify its design, to provide the possibility of adjusting the parameters (temperature, pressure, speed, ejection) of the air-polymer flow, and to clarify the fundamental possibility of creating polymer functional coatings with gas-dynamic spraying. The polymeric materials, depending on their brand, are completely inert and do not react in any chemical reaction with food, animal waste products, acids and other corrosive media. It is known that polymeric materials can be attributed to the two main classes of reactants and thermoplastics. If the thermoplastic process of heating and cooling can occur repeatedly without changing their structure, then reactive plastics with a single heating with increasing time of elevated temperatures as a result of chemical processes occurring in them, transform into an insoluble solid state with the formation of a mesh structure of macromolecules. This process is irreversible, the products of the reactoplasts are destroyed by reheating at a sufficiently high temperature without first softening and thus cannot be recommended for their use in order to create polymer coatings by gas-dynamic sputtering. The characteristics of the most common thermoplastics, such as polypropylene, polyethylene, polytetrafluoroethylene, polystyrene, polyvinyl chloride, polyamides, are analyzed, and the conditions to be created for the successful application of functional polymer coatings. Experimental application of polymer coatings of the most common polymers. The results obtained indicate that the designed and manufactured prototype gasdynamic spraying device is capable of creating different modes of polymer coating. That is to change and maintain the required temperature and pressure of compressed air. The results of the researches show a fundamental possibility to create polymer coatings from thermoplastics on metal surfaces by gas-dynamic spraying.


2021 ◽  
Vol 5 (2) ◽  
pp. 9-27
Author(s):  
Ji-Dong Gu ◽  
◽  
Elizabeth Ka Wing Wu ◽  

Petroleum-based plastics are an indispensable part of our daily life now because they are flexible, convenient, light weight, waterproof, and also have good mechanical strength and economical. They are especially suitable in products packaging, but they accumulate in soils, rivers and oceans, resulting in undesirable environmental and ecological hazards. Conventional plastics wastes in landfills occupy a much higher proportion of space because of their light-weight and extremely low biodegradation rate under anaerobic conditions. Composting is a treatment process to deal with biodegradable plastics (BPs) wastes and diverts a fraction of the wastes from landfilling to provide a feasible solution to the waste management problem. Biodegradability and degradation rate of plastics products depend on the fundamental chemical characteristics of the specific plastics mainly while environmental conditions and the establishment of an active degrading population of microorganisms contribute to a small extent of the fate of plastics after disposal. As the biodegradation rate varies among different plastics, a group of testing methods are available for assessing the degradability of different plastics and their products. Plasticizers in plastics and polymeric materials deserve a special attention up on their dispersal and ecological impact because of their endocrine-disrupting activity. The widely used phthalate esters are biodegradable by indigenous microorganisms in the environments, but the large quantity of them used is a serious issue to the environment and ecological health. However, there is an apparent cost difference between biodegradable and synthetic plastics, which hinder the commercialization of biodegradable ones for daily use. Separation of waste collection and education can contribute to the plastic waste management. It is unrealistic that biodegradable plastics are the solution to the problems facing today’s society on waste management. The ultimate goal is to reduce the use by society members so that amount of waste generated can be reduced so that waste products can be reduced from the sources.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1073
Author(s):  
Dmitriy Berillo ◽  
Areej Al-Jwaid ◽  
Jonathan Caplin

Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. This review evaluates applications of macroporous cryogels as tools for the bioremediation of contaminants in wastewater.


Author(s):  
D. L. Misell

In the electron microscopy of biological sections the adverse effect of chromatic aberration on image resolution is well known. In this paper calculations are presented for the inelastic and elastic image intensities using a wave-optical formulation. Quantitative estimates of the deterioration in image resolution as a result of chromatic aberration are presented as an alternative to geometric calculations. The predominance of inelastic scattering in the unstained biological and polymeric materials is shown by the inelastic to elastic ratio, I/E, within an objective aperture of 0.005 rad for amorphous carbon of a thickness, t=50nm, typical of biological sections; E=200keV, I/E=16.


Author(s):  
Martin J. Mahon ◽  
Patrick W. Keating ◽  
John T. McLaughlin

Coatings are applied to appliances, instruments and automobiles for a variety of reasons including corrosion protection and enhancement of market value. Automobile finishes are a highly complex blend of polymeric materials which have a definite impact on the eventual ability of a car to sell. Consumers report that the gloss of the finish is one of the major items they look for in an automobile.With the finish being such an important part of the automobile, there is a zero tolerance for paint defects by auto assembly plant management. Owing to the increased complexity of the paint matrix and its inability to be “forgiving” when foreign materials are introduced into a newly applied finish, the analysis of paint defects has taken on unparalleled importance. Scanning electron microscopy with its attendant x-ray analysis capability is the premier method of examining defects and attempting to identify their root cause.Defects are normally examined by cutting out a coupon sized portion of the autobody and viewing in an SEM at various angles.


Author(s):  
J. Thieme ◽  
J. Niemeyer ◽  
P. Guttman

In soil science the fraction of colloids in soils is understood as particles with diameters smaller than 2μm. Clay minerals, aquoxides of iron and manganese, humic substances, and other polymeric materials are found in this fraction. The spatial arrangement (microstructure) is controlled by the substantial structure of the colloids, by the chemical composition of the soil solution, and by thesoil biota. This microstructure determines among other things the diffusive mass flow within the soils and as a result the availability of substances for chemical and microbiological reactions. The turnover of nutrients, the adsorption of toxicants and the weathering of soil clay minerals are examples of these surface mediated reactions. Due to their high specific surface area, the soil colloids are the most reactive species in this respect. Under the chemical conditions in soils, these minerals are associated in larger aggregates. The accessibility of reactive sites for these reactions on the surface of the colloids is reduced by this aggregation. To determine the turnover rates of chemicals within these aggregates it is highly desirable to visualize directly these aggregation phenomena.


2020 ◽  
Vol 11 (48) ◽  
pp. 7603-7624
Author(s):  
Ismail Altinbasak ◽  
Mehmet Arslan ◽  
Rana Sanyal ◽  
Amitav Sanyal

This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.


Polymer News ◽  
2004 ◽  
Vol 29 (7) ◽  
pp. 205-212 ◽  
Author(s):  
Rengarajan Balaji ◽  
Sylvie Boileau ◽  
Philippe Guérin ◽  
Daniel Grande

Sign in / Sign up

Export Citation Format

Share Document