The Lateral Femoral Condyle Index Is Not a Risk Factor for Primary Noncontact Anterior Cruciate Ligament Injury

2021 ◽  
pp. 036354652110572
Author(s):  
Emma K. Nowak ◽  
Mélanie L. Beaulieu ◽  
Bruce D. Beynnon ◽  
James A. Ashton-Miller ◽  
Daniel R. Sturnick ◽  
...  

Background: The lateral femoral condyle index (LFCI)—a recently developed measure of the sphericity of the lateral femoral condyle—was reported to be a risk factor for anterior cruciate ligament (ACL) injury. However, issues have been raised regarding how the index was measured and regarding the patient group and the knee in which it was measured. Purpose: To investigate the association between the LFCI and the risk of sustaining a primary, noncontact ACL injury, and to examine whether this association was moderated by the posterior-inferior–directed slope of the lateral tibial plateau. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A secondary analysis was conducted of deidentified magnetic resonance images of the uninjured knees of 86 athletes with ACL injury and the corresponding knees of 86 control athletes, matched for sports team, sex, and age. From those images, we measured the LFCI and the posterior-inferior–directed slope of the middle region articular cartilage surface of the tibial plateau’s lateral compartment. Conditional logistic regressions were performed to determine whether the LFCI was significantly associated with ACL injury risk and whether the lateral tibial compartment middle cartilage slope moderated this association. Data were analyzed for female and male participants separately as well as for both groups combined. Results: The LFCI was not found to be significantly associated with experiencing a primary, noncontact ACL injury for all analyses. The lateral tibial slope measure was not found to moderate the association between the LFCI and ACL injury. A conditional logistic regression analysis using the LFCI data of the injured knees, instead of the uninjured knees, of the participants with ACL injury revealed that the LFCI was significantly associated with ACL injury. Conclusion: In this population of athletically active female and male participants, the LFCI was not found to be a risk factor for noncontact ACL injury, regardless of the geometric features of the lateral tibial slope.

2021 ◽  
Author(s):  
Miao He ◽  
Jie Li

Abstract Background Studies have shown a significant association between the radiographically measured lateral femoral condyle ratio (LFCR) and anterior cruciate ligament (ACL) injury. However, it is unclear whether the the LFCR measured by magnetic resonance imaging (MRI) is associated with risk of noncontact ACL injury. Objective 1 To investigate the effect of the LFCR on the risk of noncontact ACL injury by MRI. 2 To investigate the association of the LFCR measured by MRI with multiple bone morphological risk factors and evaluate the most sensitive risk predictors of noncontact ACL injury. Methods A total of 116 patients, including 58 subjects with noncontact ACL injury and 58 age-matched and sex-matched controls with only meniscus injury, were included in this retrospective case-control study. The LFCR, lateral tibial slope (LTS), lateral tibial height (LTH), medial tibial slope (MTS), and medial tibial depth (MTD) were measured on MRI. The differences in each index between the two groups were compared, and risk factors were screened by single-factor logistic regression analysis. Indicators with P values <0.1 were included in the logistic regression equation. The critical values and areas under the curve (AUCs) of independent risk factors were determined by receiver operating characteristic (ROC) curve analysis. Finally, the diagnostic performance of each risk factor was evaluated by the Z-test. Results A total of 116 patients who met the inclusion criteria were included in the final analysis (58 cases in the noncontact ACL injury group and 58 cases in the control group). Patients with noncontact ACL injury had a higher femoral LFCR (63.5±2.7%) than patients with simple meniscus tear. Among all the risk factors for ACL injury, the AUC for the LFCR was the largest, at 0.81 (95% CI, 0.73-0.88), and when the critical value was 61.35%, the sensitivity and specificity for the diagnosis of ACL injury were 79% and 67%, respectively. Combined with the LTH (> 2.35 mm), the diagnostic performance was improved. The AUC was 0.85 (95% CI, 0.78-0.92), the sensitivity was 0.83, and the specificity was 0.76 Conclusion This study shows that an increased LFCR is related to an increased risk of noncontact ACL injury by MRI. The LFCR and LTH are the most sensitive risk factors for noncontact ACL injury and may help clinicians identify individuals prone to ACL injury, allowing prevention and intervention measures to be applied.


Author(s):  
A. Korthaus ◽  
M. Krause ◽  
G. Pagenstert ◽  
M. Warncke ◽  
F. Brembach ◽  
...  

Abstract Introduction An increased tibial slope is a risk factor for rupture of the anterior cruciate ligament. In addition, a tibial bone bruise or posterior lateral impression associated with slope changes also poses chronic ligamentous instability of the knee joint associated with an anterior cruciate ligament (ACL) injury. In the majority of cases, the slope is measured in one plane X-ray in the lateral view. However, this does not sufficient represent the complex anatomy of the tibial plateau and especially for the posterolateral quadrant. Normal values from a “healthy” population are necessary to understand if stability of the knee joint is negatively affected by an increasing slope in the posterolateral area. Until now there are no data about the physiological slope in the posterolateral quadrant of the tibial plateau. Materials and methods In 116 MRI scans of patients without ligamentous lesions and 116 MRI scans with an ACL rupture, tibial slope was retrospectively determined using the method described by Hudek et al. Measurements were made in the postero-latero-lateral (PLL) and postero-latero-central (PLC) segments using the 10-segment classification. In both segments, the osseous as well as the cartilaginous slope was measured. Measurements were performed by two independent surgeons. Results In the group without ligamentous injury the mean bony PLL slope was 5.8° ± 4.8° and the cartilaginous PLL slope was 6.7° ± 4.8°. In the PLC segment the mean bony slope was 6.6° ± 5.0° and the cartilaginous slope was 9.4° ± 5.7°. In the cohort with ACL rupture, the bony and cartilaginous slope in both PLL and PCL were significantly higher (P < 0.001) than in the group without ACL injury (bony PLL 9.8° ± 4.8°, cartilage PLL 10.4° ± 4.7°, bony PLC 10.3° ± 4.8°, cartilage PLL 12.8° ± 4.3°). Measurements were performed independently by two experienced surgeons. There were good inter- (CI 87–98.7%) and good intraobserver (CI 85.8–99.6%) reliability. Conclusion The bony and the cartilaginous slope in the posterolateral quadrant of the tibial plateau are different but not independent. Patients with an anterior cruciate ligament injury have a significantly steeper slope in the posterolateral quadrant compared to a healthy group. Our data indicate that this anatomic feature might be a risk factor for a primary ACL injury which has not been described yet. Level of evidence III.


2019 ◽  
Vol 47 (4) ◽  
pp. 1602-1609 ◽  
Author(s):  
Mengquan Huang ◽  
Yubiao Li ◽  
Naiming Guo ◽  
Chunlai Liao ◽  
Bin Yu

Objectives This study was performed to compare the intercondylar notch angle (INA) and tibial slope in patients with and without anterior cruciate ligament (ACL) injury and determine the risk factors and influence of these anatomic variations on ACL injury. Methods Participants with and without non-contact ACL injuries were included in the patient and control groups, respectively. The INA (formed by the femoral axis and Blumensaat line), lateral tibial slope (LTS), and medial tibial slope (MTS) were measured on magnetic resonance images. Comparisons were performed between the two groups. A binary logistic regression model was used to determine the influence of the variables on ACL injury. Results Fifty-two participants were included in each group. The INA was significantly smaller and the LTS was significantly greater in the patients than in the controls. No difference was found in the MTS between the two groups. The area under the receiver operating characteristic curve for the combination of the INA and LTS was 0.776 (95% confidence interval, 0.688–0.864). Conclusions The INA was smaller and the LTS was greater in patients with than without ACL tears. The INA in combination with the LTS could be used to predict ACL injury.


2018 ◽  
Vol 100 (10) ◽  
pp. 857-864 ◽  
Author(s):  
Thomas R. Pfeiffer ◽  
Jeremy M. Burnham ◽  
Jonathan D. Hughes ◽  
Ajay C. Kanakamedala ◽  
Elmar Herbst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document