The Effects of Removal and Reconstruction of the Anterior Cruciate Ligament on Patellofemoral Kinematics

1998 ◽  
Vol 26 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Yeou-Fang Hsieh ◽  
Louis F. Draganich ◽  
Sherwin H. Ho ◽  
Bruce Reider

Patellofemoral pain may be associated with anterior cruciate ligament deficiency or may occur after anterior cruciate ligament reconstruction. We investigated the effects of the removal and reconstruction of the anterior cruciate ligament on the kinematics of the tibiofemoral and patellofemoral joints during physiologic levels of quadriceps muscle loads in seven cadaveric knees. A bone-patellar tendon-bone graft was used for intraarticular reconstruction of the anterior cruciate ligament. The spatial positions of the tibiofemoral and patellofemoral joints were measured between 0° and 90° of knee flexion in 15° increments with a six degree-of-freedom digitizing system. Excision of the anterior cruciate ligament resulted in statistically significant increases in anterior tibial translation between 0° and 90° and valgus tibial rotation between 30° and 90°; intraarticular reconstruction returned these to levels not significantly different from those of the intact knee. Excision of the anterior cruciate ligament resulted in significant increases in lateral patellar tilt, ranging from 6.3° to 9.0° between full extension and 90° of knee flexion, and in lateral patellar shift, ranging from 2.9 mm at 15° of knee flexion to 5.9 mm at 90°; intraarticular reconstruction returned these to levels not significantly different from those of the intact knee. Neither removal nor reconstruction of the anterior cruciate ligament significantly affected tibial internal-external rotation, patellar flexion, patellar mediolateral rotation, patellar anteroposterior translation, or patellar proximodistal translation.

2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Guoan Li ◽  
Ali Hosseini ◽  
Hemanth Gadikota ◽  
Thomas Gill

This study evaluated the biomechanical efficacy of single-tunnel double-bundle anterior cruciate ligament (ACL) reconstruction technique. The graft construct is achieved using a novel fixation device that splits an ACL (SPACL) graft into two bundles, recreating the anteromedial (AM) and posterolateral (PL) bundles for ACL reconstruction. A pullout strength test of the SPACL was performed using a 7-mm bovine digital extensor tendon graft. The capability in restoration of knee kinematics after SPACL reconstruction was investigated using cadaveric human knees on a robotic testing system under an anterior tibial load of 134 N and a simulated quadriceps load of 400 N. The data indicated that the SPACL graft has a pullout strength of 823.7±172.3 N. Under the 134 N anterior tibial load, the anteroposterior joint laxity had increased constraint using the SPACL reconstruction but not significantly (p > 0.05) at all selected flexion angles. Under the 400 N quadriceps load, no significant differences were observed between the anterior tibial translation of intact knee and SPACL conditions at all selected flexion angles, but the SPACL graft induced a significant increase in external tibial rotation compared to the intact knee condition at all selected flexion angles with a maximal external rotation of −3.20 deg ±3.6 deg at 90 deg flexion. These data showed that the SPACL technique is equivalent or superior to existing ACL reconstruction techniques in restoration of knee laxity and kinematics. The new SPACL reconstruction technique could provide a valuable alternation to contemporary ACL reconstruction surgery by more closely recreating native ACL kinematics.


2001 ◽  
Vol 29 (6) ◽  
pp. 771-776 ◽  
Author(s):  
Jürgen Höher ◽  
Akihiro Kanamori ◽  
Jennifer Zeminski ◽  
Freddie H. Fu ◽  
Savio L-Y. Woo

Ten cadaveric knees (donor ages, 36 to 66 years) were tested at full extension, 15°, 30°, and 90° of flexion under a 134-N anterior tibial load. In each knee, the kinematics as well as in situ force in the graft were compared when the graft was fixed with the tibia in four different positions: full knee extension while the surgeon applied a posterior tibial load (Position 1), 30° of flexion with the tibia at the neutral position of the intact knee (Position 2), 30° of flexion with a 67-N posterior tibial load (Position 3), and 30° of flexion with a 134-N posterior tibial load (Position 4). For Positions 1 and 2, the anterior tibial translation and the in situ forces were up to 60% greater and 36% smaller, respectively, than that of the intact knee. For Position 3, knee kinematics and in situ forces were closest to those observed in the intact knee. For Position 4, anterior tibial translation was significantly decreased by up to 2 mm and the in situ force increased up to 31 N. These results suggest that the position of the tibia during graft fixation is an important consideration for the biomechanical performance of an anterior cruciate ligament-reconstructed knee.


2005 ◽  
Vol 33 (5) ◽  
pp. 712-718 ◽  
Author(s):  
Volker Musahl ◽  
Anton Plakseychuk ◽  
Andrew Vanscyoc ◽  
Tomoyuki Sasaki ◽  
Richard E. Debski ◽  
...  

Background Knee kinematics and in situ forces resulting from anterior cruciate ligament reconstructions with 2 femoral tunnel positions were evaluated. Hypothesis A graft placed inside the anatomical footprint of the anterior cruciate ligament will restore knee function better than a graft placed at a position for best graft isometry. Study Design Controlled laboratory study. Methods Ten cadaveric knees were tested in response to a 134-N anterior load and a combined 10-N·m valgus and 5-N·m internal rotation load. A robotic universal force-moment sensor testing system was used to apply loads, and resulting kinematics were recorded. An active surgical robot system was used for positioning tunnels in 2 locations in the femoral notch: inside the anatomical footprint of the anterior cruciate ligament and a position for best graft isometry. The same quadrupled hamstring tendon graft was used for both tunnel positions. The 2 loading conditions were applied. Results At 30° of knee flexion, anterior tibial translation in response to the anterior load for the intact knee was 9.8 ± 3.1 mm. Both femoral tunnel positions resulted in significantly higher anterior tibial translation (position 1: 13.8 ± 4.6 mm; position 2: 16.6 ± 3.7 mm; P <. 05). There was a significant difference between the 2 tunnel positions. At the same flexion angle, the anterior tibial translation in response to the combined load for the intact knee was 7.7 ± 4.0 mm. Both femoral tunnel positions resulted in significantly higher anterior tibial translation (position 1: 10.4 ± 5.5 mm; position 2: 12.0 ± 5.2 mm; P <. 05), with a significant difference between the tunnel positions. Conclusion Neither femoral tunnel position restores normal kinematics of the intact knee. A femoral tunnel position inside the anatomical footprint of the anterior cruciate ligament results in knee kinematics closer to the intact knee than does a tunnel position located for best graft isometry. Clinical Relevance Anatomical femoral tunnel position is important in reproducing function of the anterior cruciate ligament.


2015 ◽  
Vol 50 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Randy J. Schmitz ◽  
Hyunsoo Kim ◽  
Sandra J. Shultz

Context: Fatigue is suggested to be a risk factor for anterior cruciate ligament injury. Fatiguing exercise can affect neuromuscular control and laxity of the knee joint, which may render the knee less able to resist externally applied loads. Few authors have examined the effects of fatiguing exercise on knee biomechanics during the in vivo transition of the knee from non–weight bearing to weight bearing, the time when anterior cruciate ligament injury likely occurs. Objective: To investigate the effect of fatiguing exercise on tibiofemoral joint biomechanics during the transition from non–weight bearing to early weight bearing. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: Ten participants (5 men and 5 women; age = 25.3 ± 4.0 years) with no previous history of knee-ligament injury to the dominant leg. Intervention(s): Participants were tested before (preexercise) and after (postexercise) a protocol consisting of repeated leg presses (15 repetitions from 10°–40° of knee flexion, 10 seconds' rest) against a 60% body-weight load until they were unable to complete a full bout of repetitions. Main Outcome Measure(s): Electromagnetic sensors measured anterior tibial translation and knee-flexion excursion during the application of a 40% body-weight axial compressive load to the bottom of the foot, simulating weight acceptance. A force transducer recorded axial compressive force. Results: The axial compressive force (351.8 ± 44.3 N versus 374.0 ± 47.9 N; P = .018), knee-flexion excursion (8.0° ± 4.0° versus 10.2° ± 3.7°; P = .046), and anterior tibial translation (6.7 ± 1.7 mm versus 8.2 ± 1.9 mm; P &lt; .001) increased from preexercise to postexercise. No significant correlations were noted. Conclusions: Neuromuscular fatigue may impair initial knee-joint stabilization during weight acceptance, leading to greater accessory motion at the knee and the potential for greater anterior cruciate ligament loading.


Sign in / Sign up

Export Citation Format

Share Document