Circadian Rhythms, Disease and Chronotherapy

2021 ◽  
pp. 074873042110443
Author(s):  
Yool Lee ◽  
Jeffrey M. Field ◽  
Amita Sehgal

Circadian clocks are biological timing mechanisms that generate 24-h rhythms of physiology and behavior, exemplified by cycles of sleep/wake, hormone release, and metabolism. The adaptive value of clocks is evident when internal body clocks and daily environmental cycles are mismatched, such as in the case of shift work and jet lag or even mistimed eating, all of which are associated with physiological disruption and disease. Studies with animal and human models have also unraveled an important role of functional circadian clocks in modulating cellular and organismal responses to physiological cues (ex., food intake, exercise), pathological insults (e.g. virus and parasite infections), and medical interventions (e.g. medication). With growing knowledge of the molecular and cellular mechanisms underlying circadian physiology and pathophysiology, it is becoming possible to target circadian rhythms for disease prevention and treatment. In this review, we discuss recent advances in circadian research and the potential for therapeutic applications that take patient circadian rhythms into account in treating disease.

Author(s):  
Kévin Tartour ◽  
Kiran Padmanabhan

Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior—go hand in hand with 24 h rhythms in genome topology.


2021 ◽  
Author(s):  
Kankan Zhao ◽  
Bin Ma ◽  
Yan Xu ◽  
Erinne Stirling ◽  
Jianming Xu

AbstractMicrobial community circadian rhythms have a broad influence on host health and even though light-induced environmental fluctuations could regulate microbial communities, the contribution of light to the circadian rhythms of rhizosphere microbial communities has received little attention. To address this gap, we monitored diel changes in the microbial communities in rice (Oryza sativa L.) rhizosphere soil under light–dark and constant dark regimes, identifying microbes with circadian rhythms caused by light exposure and microbial circadian clocks, respectively. While rhizosphere microbial communities displayed circadian rhythms under light–dark and constant dark regimes, taxa possessing circadian rhythms under the two conditions were dissimilar. Light exposure concealed microbial circadian clocks as a regulatory driver, leading to fewer ecological niches in light versus dark communities. These findings disentangle regulation mechanisms for circadian rhythms in the rice rhizosphere microbial communities and highlight the role of light-induced regulation of rhizosphere microbial communities.


2020 ◽  
Vol 6 (2) ◽  
pp. 71-80
Author(s):  
Michelle Werdann ◽  
Yong Zhang

The circadian clock controls daily rhythms in animal physiology, metabolism, and behavior, such as the sleep‐wake cycle. Disruption of circadian rhythms has been revealed in many diseases including neurodegenerative disorders. Interestingly, patients with many neurodegenerative diseases often show problems with circadian clocks even years before other symptoms develop. Here we review the recent studies identifying the association between circadian rhythms and several major neurodegenerative disorders. Early intervention of circadian rhythms may benefit the treatment of neurodegeneration.


Author(s):  
Rujia Luo ◽  
Yutao Huang ◽  
Huan Ma ◽  
Jinhu Guo

Intrinsic circadian clocks generate circadian rhythms of physiology and behavior, which provide the capabilities to adapt to cycling environmental cues that result from the self-rotation of the Earth. Circadian misalignment leads to deleterious impacts on adaptation and health in different organisms. The environmental cues on the interplanetary journey to and on Mars dramatically differ from those on Earth. These differences impose numerous adaptive challenges, including challenges for humans’ circadian clock. Thus, adaptation of circadian rhythms to the Martian environment is a prerequisite for future landing and dwelling on Mars. Here, we review the progress of studies associated with the influence of the Martian environment on circadian rhythms and propose directions for further study and potential strategies to improve the adaptation of the circadian clock for future Mars missions.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3644-3644
Author(s):  
Morayo Adebiyi ◽  
Zhaoyang Zhao ◽  
Jeanne Manalo ◽  
Cheng Chi Lee ◽  
Wa Xian ◽  
...  

Abstract Sickle-cell disase (SCD) is a life-threatening hemolytic genetic disorder. Chronic hemolysis and elevated inflammation that underlie SCD pathophysiology is difficult to treat in the clinic due to an unclear mechanism. The role of the circadian clock is required for maintaining inflammatory states which is important for proper cellular and organ function. Circadian clocks are regulated by a series of circadian clock genes which have known functions in inflammation, heme and iron metabolism. However, the function of circadian clocks in SCD remains unknown. Here, using an unbiased and robust microarray screen, we found that genes involved in circadian rhythms, inflammatory response, heme and iron metabolism were significantly altered in the lungs of SCD Berkeley transgenic mice compared to C57BL/6 (WT) mice used as controls (N=3, P<0.05, normalized to WT). Period 2 (Per2) gene plays a role in regulating the circadian clock. Since the role of Per2 is not known in SCD, we transplanted bone marrow (BM) of SCD and WT mice to Per2Luciferase (Per2Luc) bioluminescence reporter mice to generate SCD → Per2 Luc and WT→ Per2 Luc mice. Per2 circadian rhythms were determined by amplitude and periodicity in ex-vivo derived lung tissue explants. Although the period of the Per2 rhythms remained persistent throughout three circadian cycles, we demonstrated that the amplitude of circadian rhythm of Per2 was significantly upregulated in SCD mouse lung compared to WT mouse lung (N=3 per group, P<0.05). However, Per2 circadian rhythms in SCD mouse livers and kidneys did not show differences in amplitude or period compared to controls (N= 3 per group). To assess the importance of elevated Per1 and Per2 homologue genes in SCD, we transplanted BM of SCD mice to Per1/Per2 double deficient (Per1/Per2 dKO) and WT mice, respectively. To our surprise, Per1/Per2 dKO transplanted with SCD mouse BM (SCD→ Per1/Per2 dKO) displayed severe irradiation sensitivity and were more susceptible to an early death compared to WT BM transplanted mice. Mechanistically, we revealed that peripheral deletion of Per1/Per2 led to increased systemic inflammation featured with an increase of peripheral white blood cells (WBCs) in SCD→ Per1/Per2 dKO mice compared to SCD→ WT mice (50.47 ± 6.74 and 31.68 ± 1.04, respectfully, N=5 mice per group, P<0.01) without an effect on sickling in both groups of SCD chimeric mice. Moreover, we found that peripheral deletion of Per1/Per2 resulted in severe lung damage characterized by elevated congestion, neutrophil infiltration and secretion of IL-6 in lavage fluid in SCD→ Per1/Per2 dKO mouse lung compared to SCD→ WT mouse lung. Additionally, we identified that peripheral deletion of Per1/Per2 induced iron overload, heme deposits and macrophage infiltration in the lung of SCD→Per1/Per2 dKO mice compared to SCD→ WT mice. In conclusion, we discovered that Per2 is induced in SCD mouse lung but not in other organs such as kidney and liver and that its elevation is beneficial to counteract systemic inflammation, reduce pulmonary inflammatory responses, iron overload, tissue damage and thus increase survival in SCD mice. Overall, our studies reveal new molecular insight applicable to two burgeoning fields, circadian biology and SCD which pave a way for innovative therapeutic avenue for SCD. Disclosures D'Alessandro: Omix Technologies inc: Equity Ownership; Hemanext inc: Membership on an entity's Board of Directors or advisory committees.


Author(s):  
Yool Lee

AbstractCircadian clocks are ubiquitous timing mechanisms that generate approximately 24-h rhythms in cellular and bodily functions across nearly all living species. These internal clock systems enable living organisms to anticipate and respond to daily changes in their environment in a timely manner, optimizing temporal physiology and behaviors. Dysregulation of circadian rhythms by genetic and environmental risk factors increases susceptibility to multiple diseases, particularly cancers. A growing number of studies have revealed dynamic crosstalk between circadian clocks and cancer pathways, providing mechanistic insights into the therapeutic utility of circadian rhythms in cancer treatment. This review will discuss the roles of circadian rhythms in cancer pathogenesis, highlighting the recent advances in chronotherapeutic approaches for improved cancer treatment.


2014 ◽  
Vol 35 (2) ◽  
pp. 111-118
Author(s):  
Daniel J. Howard ◽  
Roger A. Kerin

The name similarity effect is the tendency to like people, places, and things with names similar to our own. Although many researchers have examined name similarity effects on preferences and behavior, no research to date has examined whether individual differences exist in susceptibility to those effects. This research reports the results of two experiments that examine the role of self-monitoring in moderating name similarity effects. In the first experiment, name similarity effects on brand attitude and purchase intentions were found to be stronger for respondents high, rather than low, in self-monitoring. In the second experiment, the interactive effect observed in the first study was found to be especially true in a public (vs. private) usage context. These findings are consistent with theoretical expectations of name similarity effects as an expression of egotism manifested in the image and impression management concerns of high self-monitors.


Sign in / Sign up

Export Citation Format

Share Document