Contribution to the selection of cutting fluid type and its application technique for grinding of bearing steel

Author(s):  
Raphael Lima de Paiva ◽  
Rodrigo de Souza Ruzzi ◽  
Rosemar Batista da Silva

The elevated heat generation in grinding can develop high temperatures at the contact zone, which can adversely affect the surface integrity of the workpiece, especially when grinding hardened steels with conventional abrasives. Thus, the correct selection of cooling-lubrication condition is essential to avoid or attenuate any possible negative effect to workpiece surface integrity. However, the literature lacks work comparing different cutting fluid application technique (e.g. flood and minimum quantity lubrication – MQL) using the same fluid on both techniques. In this context, this work aims to contribute to the selection of cutting fluid type and its application technique for the grinding of bearing steel. Experimental trials were conducted comparing the use of semisynthetic and synthetic cutting fluids, both applied via conventional (flood) and MQL techniques. Different cutting conditions were also tested. A 24 full factorial design of experiment (DOE) was carried out with the following factors: fluid application technique, type of fluid, workspeed, and radial depth of cut. An analysis of main effects and interactions was performed for surface finish (Ra parameter) results, including a prediction model based on the analysis of variance (ANOVA). The morphology of ground surface and microhardness below machined surface were also analyzed. The results showed that the ground surface finish was strongly dependent on the cutting fluid type and its application technique combination: superior finishing was observed with the combination of semisynthetic fluid delivered via flood technique and with synthetic fluid delivered via MQL technique. From the surface morphology analysis, it was observed that the inferior lubrication capacity of synthetic fluid applied via flood condition deteriorated the surface finish and morphology. The surfaces ground with semisynthetic fluid provided, in general, lower values of Ra and lower microhardness variation. The prediction model for Ra showed a maximum error of 14% in comparison to the measured values.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1660
Author(s):  
Raphael Lima de Paiva ◽  
Rodrigo de Souza Ruzzi ◽  
Rosemar Batista da Silva

The use of cutting fluid is crucial in the grinding process due to the elevated heat generated during the process which typically flows to the workpiece and can adversely affect its integrity. Considering the conventional technique for cutting fluid application in grinding (flood), its efficiency is related to certain factors such as the type of fluid, nozzle geometry/positioning, flow rate and coolant concentration. Another parameter, one which is usually neglected, is the cutting fluid temperature. Since the heat exchange between the cutting fluid and workpiece increases with the temperature difference, controlling the cutting fluid temperature before its application could improve its cooling capability. In this context, this work aimed to analyze the surface integrity of bearing steel (hardened SAE 52100 steel) after grinding with an Al2O3 grinding wheel with the cutting fluid delivered via flood technique at different temperatures: 5 °C, 10 °C, 15 °C as well as room temperature (28 ± 1 °C). The surface integrity of the workpiece was analyzed in terms of surface roughness (Ra parameter), images of the ground surface, and the microhardness and microstructure beneath the machined surface. The results show that the surface roughness values reduced with the cutting fluid temperature. Furthermore, the application of a cutting fluid at low temperatures enabled the minimization of thermal damages regarding visible grinding burns, hardness variation, and microstructure changes.


Author(s):  
Raphael Lima de Paiva ◽  
Rosemar Batista da Silva ◽  
Mark J. Jackson ◽  
Alexandre Mendes Abrão

The application of cutting fluid in grinding operations is crucial to control temperature levels and prevent thermal damage to the workpiece. Water-based (emulsions and solutions) coolants are used in grinding operations owing to their excellent cooling capability and relatively lower cost compared to neat oils. However, the cutting fluid efficiency is not only dependent on its type, but also on other parameters including its concentration and flow rate. In this context, this work aims to analyze the influence of the coolant concentration and flow rate on the grinding process. Two different workpiece materials for the production of plastic injection moulds were machined: VP80 and VPATLAS steel grades. Six grinding conditions (combinations of depth of cut values of 5, 15, and 25 μm with coolant concentration of 3% and 8%, respectively) were employed in the former, while two grinding conditions were used for the latter. The output parameter used to assess the influence of coolant concentration and flow rate on the grinding operation focused on the integrity of the workpiece materials (surface roughness and microhardness below the ground surface). The results showed that the surface integrity of VP80 after grinding was more sensitive to depth of cut than to cutting fluid concentration. Furthermore, the highest coolant concentration outperformed the lowest one when grinding under more severe conditions. With regard VPATLAS steel, no influence of the coolant flow rate on surface roughness was observed.


Author(s):  
Raphael Lima de Paiva ◽  
Rodrigo Ruzzi ◽  
Felipe dos Anjos Rodrigues Campos ◽  
Marcelo Kuroda ◽  
Rodolfo Oliveira ◽  
...  

2010 ◽  
Vol 426-427 ◽  
pp. 49-54 ◽  
Author(s):  
Chang He Li ◽  
Ya Li Hou ◽  
Yu Cheng Ding

Grinding processes are mainly technique employed widely as a finishing process in a variety of materials, such as metals, hardness and brittleness and ductile materials machining to achieve good dimensional and form accuracy of the product with acceptable surface integrity. However, grinding is associated with high specific energy requirements which may be an order higher than that required in other conventional machining processes such as turning, planning, milling etc. Therefore, in grinding process, high grinding zone temperature may lead to thermal damage to the work surface, induces micro-cracks and tensile residual stresses at the ground surfaces, which deteriorate surface quality and integrality of the ground surface. Therefore, grinding fluids are applied in different forms to control such high temperature, but they are ineffective, especially under high speed grinding conditions where the energy of the fluid is not sufficient to penetrate the boundary layer of air surrounding the wheel. Moreover, the conventional flood supply system demands more resources for operation, maintenance, and disposal, and results in higher environmental and health problems. Therefore, there are critical needs to reduce the use of cutting fluid in grinding process, and cryogenic cooling grinding is a promising solution. The work presented in this paper aims at evaluating the grind ability and surface integrity of the nickel base super alloy resulting from the application of cryogenic cooling.


Author(s):  
Alexander Gillespie

This book examines the idea of sustainable development, made up of economic, social, and environmental parts over the period of human history. This work suggests humanity has been unsustainable in all three areas for most of its history, although in the last few hundred years the scale of unsustainability has increased, while, simultaneously, answers have started to emerge. This conclusion can be seen in two parts, namely the economic and social sides of sustainable development and then the environmental ones. This work suggests that, with the correct selection of tools, solid and positive foundations for the economic and social sides of sustainable development is possible as the world globalizes. This is not, however, a foregone conclusion. Despite a number of recent positive indicators in this area, there are still very large unanswered questions with existing mechanisms and other gaps in the international architecture which, if not fixed, could quickly make problems of economic and social sustainability worse, not better. With the third leg of sustainable development, that for the environment, the optimism is not as strong. The good news is that science, laws, and policies have evolved and expanded to the level that, in theory, there is no environmental problem which cannot be solved. In many areas, especially in the developed world, success is already easy to measure. Where it is not easy to measure, and pessimism creeps in, is in the developing world, which is now inheriting a scale and mixture of environmental difficulties which are simply unprecedented.


2021 ◽  
Vol 11 (2) ◽  
pp. 466
Author(s):  
Włodzimierz Kęska ◽  
Jacek Marcinkiewicz ◽  
Łukasz Gierz ◽  
Żaneta Staszak ◽  
Jarosław Selech ◽  
...  

The continuous development of computer technology has made it applicable in many scientific fields, including research into a wide range of processes in agricultural machines. It allows the simulation of very complex physical phenomena, including grain motion. A recently discovered discrete element method (DEM) is used for this purpose. It involves direct integration of equations of grain system motion under the action of various forces, the most important of which are contact forces. The method’s accuracy depends mainly on precisely developed mathematical models of contacts. The creation of such models requires empirical validation, an experiment that investigates the course of contact forces at the moment of the impact of the grains. To achieve this, specialised test stations equipped with force and speed sensors were developed. The correct selection of testing equipment and interpretation of results play a decisive role in this type of research. This paper focuses on the evaluation of the force sensor dynamic properties’ influence on the measurement accuracy of the course of the plant grain impact forces against a stiff surface. The issue was examined using the computer simulation method. A proprietary computer software with the main calculation module and data input procedures, which presents results in a graphic form, was used for calculations. From the simulation, graphs of the contact force and force signal from the sensor were obtained. This helped to clearly indicate the essence of the correct selection of parameters used in the tests of sensors, which should be characterised by high resonance frequency.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1737
Author(s):  
Milan Banić ◽  
Dušan Stamenković ◽  
Aleksandar Miltenović ◽  
Dragan Jovanović ◽  
Milan Tica

The selection of a rubber compound has a determining influence on the final characteristics of rubber-metal springs. Therefore, the correct selection of a rubber compound is a key factor for development of rubber-metal vibration isolation springs with required characteristics. The procedure for the selection of the rubber compound for vibration isolation of rubber-metal springs has been proposed, so that the rubber-metal elements have the necessary characteristics, especially in terms of deflection. The procedure is based on numerical simulation of spring deflection with Bergström-Boyce constitutive model in virtual experiment, with a goal to determine which parameters of the constitutive model will lead to spring required deflection. The procedure was verified by case study defined to select rubber compound for a rubber–metal spring used in railway engineering.


1986 ◽  
Vol 11 (4) ◽  
pp. 300-308 ◽  
Author(s):  
Robert H. Horner ◽  
Richard W. Albin ◽  
Ginevera Ralph

For generalization to be functional, it must occur with a precision that results in acquired responses occurring under appropriate, nontrained conditions, and acquired responses not occurring under inappropriate, nontrained conditions. This study examines the effect of differing types of negative teaching examples on the precision with which generalized grocery item selection is learned. Within a split-multiple baseline design, six young adults identified as mildly, moderately, or severely mentally retarded were trained to select or to reject grocery items using picture cards as cues. The dependent variables were correct selection of 10 trained “positive” grocery items and the correct rejection of 20 nontrained “negative” grocery items in a nontrained grocery store. Participants were trained in a grocery store to select 10 positive grocery examples matching their picture cards and to reject either (a) a set of negative examples that were maximally different from the positive examples, or (b) a set of negative examples that were minimally different from the positive examples. Both training sets resulted in participants correctly selecting the 10 positive items in a nontrained store. Training with the “minimally different” negative examples was functionally related to improved rejection of nontrained negative items in the nontrained store. The implications of teaching with minimally different, negative examples are discussed.


Sign in / Sign up

Export Citation Format

Share Document