Stochastic aerodynamic analysis for compressor blades with manufacturing variability based on a mathematical dimensionality reduction method

Author(s):  
Zhengtao Guo ◽  
Wuli Chu

It is essential for engineering manufacture and robust design to evaluate the impact of manufacturing variability on the aerodynamics of compressor blades efficiently and accurately. In the paper, a novel quadratic curve approximation method based on the scanning points of blade design profiles was introduced and combined with Karhunen–Loève expansion, a mathematical dimensionality reduction method for modeling manufacturing variability as truncated Normal process was proposed. Subsequently, Sparse Approximation of Moment-based Arbitrary Polynomial Chaos (SAMBA PC) and computational fluid dynamics (CFD) were applied to build a computational framework for stochastic aerodynamic analysis considering manufacturing variability. Finally, the framework was adopted to evaluate the aerodynamic variations of a high subsonic compressor cascade under the design incidence. The results illustrate that the SAMBA PC method is more efficient than the traditional methods such as Monte Carlo simulation (MCS) for stochastic aerodynamic analysis. Through uncertainty quantification, the impact of manufacturing variability on the global aerodynamic performance is primarily reflected in the fluctuation of aerodynamic losses, and the fluctuation of the total losses is mainly contributed by the fluctuation of the separation loss after the suction peak (a negative pressure spike near the leading edge (LE)) and the boundary-layer loss on the suction surface (SS). With sensitivity analysis, the most important geometric modes to aerodynamics can be revealed, which provides a useful reference for manufacturing inspection process and helps reduce computational cost in robust design.

Author(s):  
Daniel López Sánchez ◽  
Juan M. Corchado ◽  
Angelica González Arrieta

This work focuses on the design and validation of a CBR system for efficient face recognition under partial occlusion conditions. The proposed CBR system is based on a classical distance-based classification method, modified to increase its robustness to partial occlusion. This is achieved by using a novel dissimilarity function which discards features coming from occluded facial regions. In addition, we explore the integration of an efficient dimensionality reduction method into the proposed framework to reduce computational cost. We present experimental results showing that the proposed CBR system outperforms classical methods of similar computational requirements in the task of face recognition under partial occlusion.


Author(s):  
Hsein Kew

AbstractIn this paper, we propose a method to generate an audio output based on spectroscopy data in order to discriminate two classes of data, based on the features of our spectral dataset. To do this, we first perform spectral pre-processing, and then extract features, followed by machine learning, for dimensionality reduction. The features are then mapped to the parameters of a sound synthesiser, as part of the audio processing, so as to generate audio samples in order to compute statistical results and identify important descriptors for the classification of the dataset. To optimise the process, we compare Amplitude Modulation (AM) and Frequency Modulation (FM) synthesis, as applied to two real-life datasets to evaluate the performance of sonification as a method for discriminating data. FM synthesis provides a higher subjective classification accuracy as compared with to AM synthesis. We then further compare the dimensionality reduction method of Principal Component Analysis (PCA) and Linear Discriminant Analysis in order to optimise our sonification algorithm. The results of classification accuracy using FM synthesis as the sound synthesiser and PCA as the dimensionality reduction method yields a mean classification accuracies of 93.81% and 88.57% for the coffee dataset and the fruit puree dataset respectively, and indicate that this spectroscopic analysis model is able to provide relevant information on the spectral data, and most importantly, is able to discriminate accurately between the two spectra and thus provides a complementary tool to supplement current methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Chuanlei Zhang ◽  
Shanwen Zhang ◽  
Weidong Fang

Manifold learning based dimensionality reduction algorithms have been payed much attention in plant leaf recognition as the algorithms can select a subset of effective and efficient discriminative features in the leaf images. In this paper, a dimensionality reduction method based on local discriminative tangent space alignment (LDTSA) is introduced for plant leaf recognition based on leaf images. The proposed method can embrace part optimization and whole alignment and encapsulate the geometric and discriminative information into a local patch. The experiments on two plant leaf databases, ICL and Swedish plant leaf datasets, demonstrate the effectiveness and feasibility of the proposed method.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiasong Wu ◽  
Xiang Qiu ◽  
Jing Zhang ◽  
Fuzhi Wu ◽  
Youyong Kong ◽  
...  

Generative adversarial networks and variational autoencoders (VAEs) provide impressive image generation from Gaussian white noise, but both are difficult to train, since they need a generator (or encoder) and a discriminator (or decoder) to be trained simultaneously, which can easily lead to unstable training. To solve or alleviate these synchronous training problems of generative adversarial networks (GANs) and VAEs, researchers recently proposed generative scattering networks (GSNs), which use wavelet scattering networks (ScatNets) as the encoder to obtain features (or ScatNet embeddings) and convolutional neural networks (CNNs) as the decoder to generate an image. The advantage of GSNs is that the parameters of ScatNets do not need to be learned, while the disadvantage of GSNs is that their ability to obtain representations of ScatNets is slightly weaker than that of CNNs. In addition, the dimensionality reduction method of principal component analysis (PCA) can easily lead to overfitting in the training of GSNs and, therefore, affect the quality of generated images in the testing process. To further improve the quality of generated images while keeping the advantages of GSNs, this study proposes generative fractional scattering networks (GFRSNs), which use more expressive fractional wavelet scattering networks (FrScatNets), instead of ScatNets as the encoder to obtain features (or FrScatNet embeddings) and use similar CNNs of GSNs as the decoder to generate an image. Additionally, this study develops a new dimensionality reduction method named feature-map fusion (FMF) instead of performing PCA to better retain the information of FrScatNets,; it also discusses the effect of image fusion on the quality of the generated image. The experimental results obtained on the CIFAR-10 and CelebA datasets show that the proposed GFRSNs can lead to better generated images than the original GSNs on testing datasets. The experimental results of the proposed GFRSNs with deep convolutional GAN (DCGAN), progressive GAN (PGAN), and CycleGAN are also given.


Sign in / Sign up

Export Citation Format

Share Document