Experimental and numerical investigation of the thermomechanical load on a turbine housing in a radial turbocharger

Author(s):  
Shaolin Chen ◽  
Hong Zhang ◽  
Liaoping Hu ◽  
Guangqing He ◽  
Fen Lei ◽  
...  

The fatigue life of turbine housing is an important index to measure the reliability of a radial turbocharger. The increase in turbine inlet temperatures in the last few years has resulted in a decrease in the fatigue life of turbine housing. A simulation method and experimental verification are required to predict the life of a turbine housing in the early design and development process precisely. The temperature field distribution of the turbine housing is calculated using the steady-state bidirectional coupled conjugate heat transfer method. Next, the temperature field results are considered as the boundary for calculating the turbine housing temperature and thermomechanical strain, and then, the thermomechanical strain of the turbine housing is determined. Infrared and digital image correlations are used to measure the turbine housing surface temperature and total thermomechanical strain. Compared to the numerical solution, the maximum temperature RMS (Root Mean Square) error of the monitoring point in the monitoring area is only 3.5%; the maximum strain RMS error reached 11%. Experimental results of temperature field test and strain measurement test show that the testing temperature and total strain results are approximately equal to the solution of the numerical simulation. Based on the comparison between the numerical calculation and experimental results, the numerical simulation and test results were found to be in good agreement. The experimental and simulation results of this method can be used as the temperature and strain (stress) boundaries for subsequent thermomechanical fatigue (TMF) simulation analysis of the turbine housing.

2014 ◽  
Vol 1065-1069 ◽  
pp. 992-996
Author(s):  
Can Huang ◽  
Yi Zhi Bu ◽  
Qing Hua Zhang

Based on the energy method and beam-element theory, the nonlinear strain are considered, non-stress length and non-stress curvature of element of geometry control method are introducted in the integration process of stain energy. The static equilibrium equation of the geometry control method is established. Take the impacts of structural geometric profile induced by temporary loads and temperature field during the construction procedure are investigated, the correctness of the geometry control method is verified by the numerical simulation analysis.


2015 ◽  
Vol 750 ◽  
pp. 153-159
Author(s):  
Jie Dong ◽  
Xue Dong Chen ◽  
Bing Wang ◽  
Wei He Guan ◽  
Tie Cheng Yang ◽  
...  

The upper and lower courses of sea oil and gas exploitationare connected by submarine pipeline which is called life line project. Free span often occurs because of the unevenness and scour of seabed, and fatigue is one of the main failure modes.In this paper, with the finite element numerical simulation method, based on the harmonic response analysis, the research on the structural response of free span under the vibration induced by vortex was investigated, and the effect of the factors such as flow velocity, length of free span. According to the analysis results,the fatigue life of free span was evaluated.


2012 ◽  
Vol 174-177 ◽  
pp. 3027-3030
Author(s):  
Wei Wei ◽  
Ming Zhong Wang ◽  
Jun Pan

In order to avoid the heat transfixion among users in the concentration area of the water source heat pump, a suitable layout of pumps for drawing and recharging wells is required. Finite element method is adopted to establish the numerical model of groundwater temperature to predict the change trend of water temperature. The results of the simulation indicate that the groundwater temperature change from 6.3 to 14.2 °C in winter, and from 11.5 to 21.2 °C in summer. These results meet the requirements of the drawing and recharging water in the water source heat pump engineering and are able to avoid the heat transfixion among users. The effect of drawing and recharging water in the water source heat pump engineering to the changes of the groundwater’s temperature field can be analyzed quantitatively through establishing the proper numerical simulation which provides a reference to scientifically design the layout of pumps for drawing and recharging water.


2013 ◽  
Vol 706-708 ◽  
pp. 1701-1704 ◽  
Author(s):  
Xi Ping Guo ◽  
Wen Yue Han

Research on the temperature field and stress field of tuyere by numerical modeling and analyse the influence of structure on tuyere's property.


2013 ◽  
Vol 711 ◽  
pp. 209-213 ◽  
Author(s):  
Nai Fei Ren ◽  
Lei Jia ◽  
Dian Wang

Using APDL programming language, an appropriate finite element model is created and the moving cyclic loads of Gauss heat source are realized. From the detailed qualitative analysis of the results, the variety laws of temperature field in indirect SLS are obtained. Plot results at different moments, temperature cyclic curves of key points and the curves of depth of fusion and width of fusion on the set paths, are of important guiding significance for subsequent physical experiments.


2011 ◽  
Vol 99-100 ◽  
pp. 346-349
Author(s):  
Chun Mei Zhu ◽  
You Zhi Wang ◽  
Bin Yan ◽  
Hong Wei Gao

Access to the internal concrete temperature of the instantaneous temperature field and the strength of the field Real-time monitoring , Concrete temperature field and stress field of the numerical simulation analysis method was proposed . Intuitive accurate prediction that the temperature field and stress field provide a reliable basis on the distribution of temperature control schemes and the construction scheme formulated.


2012 ◽  
Vol 482-484 ◽  
pp. 651-654
Author(s):  
Na Li ◽  
Feng Ye

Aiming at the structural feature of starting water separator, a 3-D finite element model of temperature field is proposed. The starting water separator of a Ultra Supercritical Boiler(USB) has been numerically simulated by using of finite element soft ware Ansys. The boundary condition of the separator is determined. All of the working conditions are simulated. The results have the same distribution laws with the monitoring data of power plant. The maximum temperature difference between out wall and inner wall occurs in the temperature-rise period during the cold start-up, but the value between top wall and bottom wall is very lower. The simulation results can not only provide a basis for the thermal stress analysis and the life loss calculation but also provide rationalization proposal for the plant safe operation.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6526
Author(s):  
Yanan Du ◽  
Guanglin He ◽  
Yukuan Liu ◽  
Zhaoxuan Guo ◽  
Zenghui Qiao

In guided munitions, the shaped charge jet (SCJ) warhead is located behind the simulation compartment (including the control cabin, the steering gear cabin, and the guidance cabin). Therefore, the order of penetration of the SCJ is the simulation cabin and the target. To study the penetration performance of the SCJ to the target plate, the numerical simulation method is used to study the penetration performance of the designed warhead for the steel target at different standoffs, and the depth of penetration (DOP) at the best standoff is obtained, that is, the DOP of the steel target is about 128 mm. Additionally, the penetration performance of the SCJ warhead to target is studied by numerical simulation and experimental verification. Numerical simulation and experimental results show that the DOP of the SCJ warhead to the steel target is 50 mm without the simulation cabin, and about 30 mm with the simulation cabin. The results show that the penetration performance of SCJ is greatly weakened under the condition of non-optimal standoff, but the rear shaped charge warhead still has a strong penetration performance after completing the penetration of the simulated cabin.


2021 ◽  
Vol 233 ◽  
pp. 04046
Author(s):  
Changhao Zhang ◽  
Hu Li ◽  
Jianyu Yang ◽  
Huawei Lu ◽  
Peng Su

According to the structural characteristics of thin-walled parts, a model slicing method is proposed, and its mathematical process is established. The three-dimensional transient temperature field in the process of synchronous powder feeding laser cladding is studied and verified by numerical simulation method, and the thin-walled parts formed by later experimental processing are processed by the results of numerical simulation. Using the simulation results of temperature field as the basis for optimizing the processing parameters, the forming path of thin-walled parts is programmed and optimized, and the experimental verification shows the reliability of this method.


Sign in / Sign up

Export Citation Format

Share Document