Performance evaluation of solar parabolic trough receiver using multiple twisted tapes with circular perforation and delta winglet

Author(s):  
Sashank Thapa ◽  
Sushant Samir ◽  
Khushmeet Kumar

A parabolic trough collector (PTC) is one of the concentrating types of a solar collector working in the medium range of temperature from 100–400 °C, for this reason, the efficiency of the solar parabolic trough is less than other types of concentrating solar collector (Point focusing types) in terms of solar to thermal energy conversion, the improvement in efficiency is achieved by various passive heat augmentation techniques in the receiver tube. One of the promising passive techniques is twisted tape inserts used in the receiver due to its simplicity in design and the various possibility of geometric modification. This paper deals with the performance evaluation of the solar parabolic trough receiver system by using passive techniques in the receiver. The testing of the receiver of PTC was done by using multiple perforated twisted tapes with winglets having different perforation ratios ([Formula: see text]) of 0.05, 0.15, 0.25, twist ratios ([Formula: see text]) of 3, 4, 5 and wing depth ratios ([Formula: see text]) of 0.1, 0.2 and 0.3. The number of twisted tapes was fixed at 4. The examination was conducted for Reynolds numbers ([Formula: see text]) varying from 3000–21,000 using air as working fluid. The outcome shows that the use of perforation and winglet in twisted tapes augment the Nusselt number as compared to that of smooth twisted tapes. The maximum thermohydraulic performance ([Formula: see text]) of 2.40 is received by using multiple twisted tapes with perforation and winglet having [Formula: see text] = 0.3, [Formula: see text] = 3, and [Formula: see text] = 0.05 at the Re = 21,000. The correlations for Nusselt number ([Formula: see text]) and friction factor ([Formula: see text]) are also developed with ± 8.5% and ± 8.3% accuracy, respectively.

Author(s):  
Sashank Thapa ◽  
Sushant Samir ◽  
Khushmeet Kumar

Heat transfer in concentrating solar collectors like parabolic troughs has proven nowadays a very efficient method by using different passive techniques to increase the heat transfer rate. The use of passive techniques also increases the pumping power requirements to make the flow through the receiver. So, a number of researchers are working to find out the optimum performance conditions for parabolic trough receivers by using different types of inserts in flow paths. This paper presents a wide range of literature available for solar parabolic troughs in one place. Based on this extensive study, it is found that twisted tape inserts is a very wide field for investigation and the use of different shapes, pitch value, free space, and angle of twist tape are the parameters that can be considered for further studies to improve the performance of solar troughs. Also, various combinations of perforation and cuts on twisted tapes can be used to achieve enhanced performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Akbar Abbasian Arani ◽  
Ali Memarzadeh

Purpose Present investigation conducts a study on the hydrothermal features of a double flow Parabolic Trough Solar Collector (PTSC) equipped with sinusoidal-wavy grooved absorber tube and twisted tape insert filled with nanofluid. This paper aims to present an effectual PTSC which is comprised by nanofluid numerically by means of finite volume method. Design/methodology/approach The beneficial results such as pressure drop inside the absorber tube, mean predicted friction factor, predicted average Nusselt number and hydrothermal Performance Evaluation Criteria (PEC) are evaluated and reported to present the influences of numerous factors on studied interest outcomes. Effects of different Reynolds numbers and environmental conditions are also determined in this investigation. Findings It is found that using the absorber roof (canopy) can enhance the heat transfer ratio of PTSCs significantly during all studied Reynolds numbers. Also, it is realized that the combination of inner grooved surface, outer corrugated surface and inserting turbulator can improve the thermal-hydraulic characteristics of PTSCs sharply. Originality/value Novel PTSC (N.PTSC) filling with two Heat Transfer Fluids (HTFs), inner and outer surface corrugated absorber tube, absorber roof and inserting twisted tape (N.PTSC.f) has the highest PEC values among all novel configurations along all investigated Reynolds numbers which is followed by configurations N.PTSC with two HTFs and inserting twisted tape (N.PTSC.e), N.PTSC with two HTFs and outer surface corrugated absorber tube (N.PTSC.b) and N.PTSC with two HTFs and inner surface corrugated absorber tube (N.PTSC.c), respectively. N.PTSC.f Nusselt number values can overcome the high values of friction factor, and therefore is introduced as the most efficient model in the current study.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1656 ◽  
Author(s):  
Mehdi Ghalambaz ◽  
Hossein Arasteh ◽  
Ramin Mashayekhi ◽  
Amir Keshmiri ◽  
Pouyan Talebizadehsardari ◽  
...  

This study investigated the laminar convective heat transfer and fluid flow of Al2O3 nanofluid in a counter flow double-pipe heat exchanger equipped with overlapped twisted tape inserts in both inner and outer tubes. Two models of the same (co-swirling twisted tapes) and opposite (counter-swirling twisted tapes) angular directions for the stationary twisted tapes were considered. The computational fluid dynamic simulations were conducted through varying the design parameters, including the angular direction of twisted tape inserts, nanofluid volume concentration, and Reynolds number. It was found that inserting the overlapped twisted tapes in the heat exchanger significantly increases the thermal performance as well as the friction factor compared with the plain heat exchanger. The results indicate that models of co-swirling twisted tapes and counter-swirling twisted tapes increase the average Nusselt number by almost 35.2–66.2% and 42.1–68.7% over the Reynolds number ranging 250–1000, respectively. To assess the interplay between heat transfer enhancement and pressure loss penalty, the dimensionless number of performance evaluation criterion was calculated for all the captured configurations. Ultimately, the highest value of performance evaluation criterion is equal to 1.40 and 1.26 at inner and outer tubes at the Reynolds number of 1000 and the volume fraction of 3% in the case of counter-swirling twisted tapes model.


2001 ◽  
Vol 123 (3) ◽  
pp. 417-427 ◽  
Author(s):  
S. K. Saha ◽  
A. Dutta

Heat transfer and pressure drop characteristics in a circular tube fitted with twisted tapes have been investigated experimentally. Laminar swirl flow of a large Prandtl number 205<Pr<518 viscous fluid was considered. The swirl was generated by short-length twisted-tape inserts; regularly spaced twisted-tape elements with multiple twists in the tape module and connected by thin circular rods; and smoothly varying (gradually decreasing) pitch twisted-tapes. The heat transfer test section was heated electrically imposing axially and circumferentially constant wall heat flux (UHF) boundary condition. Reynolds number, Prandtl number, twist ratio, space ratio, number of tuns in the tape module, length of the twisted-tape and smoothness of the swirling pitch govern the characteristics. Friction factor and Nusselt number are lower for short-length twisted-tape than those for full-length twisted-tape. On the basis of constant pumping power and constant heat duty, however, short-length twisted-tapes are found to perform better than full-length twisted-tapes for tighter twists. Thermohydraulic performance shows that twisted-tapes with multiple twists in the tape module is not much different from that with single twist in the tape module. Friction factor and Nusselt number are approximately 15 percent lower for twisted-tapes with smooth swirl having the average pitch same as that of the uniform pitch (throughout) twisted-tape and the twisted-tapes with gradually decreasing pitch perform worse than their uniform-pitch counterparts.


Nanomaterials ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 2131-2147 ◽  
Author(s):  
Guoying Xu ◽  
Wei Chen ◽  
Shiming Deng ◽  
Xiaosong Zhang ◽  
Sainan Zhao

Sign in / Sign up

Export Citation Format

Share Document