Multi-objective optimization of alloying elements to enhance the wear resistance and impact strength of HCCI produced by furan sand mold

Author(s):  
S Dhayaneethi ◽  
J Anburaj ◽  
S Arivazhagan

High Chromium White Cast Iron (HCWCI) plays a major role in manufacturing of wear-resistant components. Due to unique wear resistance property, attribution to the additions of carbide forming elements, they have been used for mill liner applications. By varying the wt% of alloying elements such as Cr, Ti, and Mo, the wear resistance and impact strength of High Chromium Cast Iron (HCCI) can be increased. To enhance the wear resistance property according to Central Composite Design (CCD), 16 samples were fabricated by varying the wt% of alloying elements. To fabricate the samples, furan sand molds were prepared and used for the further casting process. The properties of Furan sand mold enhance the mechanical properties and reduce the mold rejection rate, production time, etc. To attain the optimum Wear Rate (WR) and Impact Strength (IS) value without dominance, optimization techniques such as Response Surface Methodological (RSM) and Particle swarm optimization (PSO) are employed to solve the multi-objective problem. The RSM and PSO predicted optimum solutions are compared by using the Weighted Aggregated Sum Product Assessment (WASPAS) ranking method. The WASPAS result revealed that when compared to the RSM result, the PSO predicted optimal wt% of chemical composition (22 wt % Cr, 3 wt % Ti, and 2.99 wt % Mo) gives the optimum WR value (53 mm3/min) and IS value (3.77 J). To validate the PSO result, experiments were carried out for the predicted wt% of alloying elements and tested. The difference between the PSO predicted result and experimental result is less than 5% error which clearly shows that PSO is an effective method to solve the multi-objective problem.

2012 ◽  
Vol 217-219 ◽  
pp. 2410-2413 ◽  
Author(s):  
Xing Hai Shao ◽  
Jing Pei Xie ◽  
Wen Yan Wang ◽  
Yan Li ◽  
Pin Gan Zhou ◽  
...  

The effects and the mechanisms of namo TiN on the high chromium cast iron are studied, the material has been prepared through infiltration casting and addition of high carbon ferrochrome powder and nano TiN powder. The alloy is formed on the surfaced of guide plate, and the wear resistance of alloy have been studied by means of SEM, XRD micro-analysis and wear-resistant performance. The grain size and the type of carbide in the organization are affected by nano TiN, and the wear resistance of carbon chromium alloy layer is affected by the type of carbide; when the addition of nano TiN is 1% (wt), the grain size is apparently refined, overeutectic primary M7C3 in the hypereutectic is precipitated uniformly in considerable amounts, therefore the wear resistance of alloy can be improved effectively.


2011 ◽  
Vol 695 ◽  
pp. 397-400
Author(s):  
Ru Qing Huang ◽  
Ri Lai Ma ◽  
Zhen Lin Lu ◽  
Yan Zhang

The effect of alloying elements on the corrosion wear behaviors of low chromium cast iron in slurry with different ions was studied by self-made three-body corrosion wear tester. The results show that the corrosion wear resistance of low chromium cast iron was decreased with the increase of concentration of Cu2+ ion or SO42- ion in slurry. The corrosion wear mechanism of low chromium cast iron was dominated by micro-cutting of abrasive, accompanying by corrosion action. The addition of alloying elements did not improve the corrosion wear properties of low chromium cast iron obviously, because the amount of carbide and its hardness was decreased when the alloying elements were added into low chromium cast iron as well as the amount of silicon element was increased.


2011 ◽  
Vol 228-229 ◽  
pp. 905-908
Author(s):  
Liu Jie Xu ◽  
Shi Zhong Wei ◽  
Ji Wen Li ◽  
Guo Shang Zhang ◽  
Xiang Dong Ma

To increase the wear resistance of components in slurry pump suffering from serious corrosive abrasion, new super high chromium cast iron (SHCCI) which contains 37wt.% chromium approximately and different carbon content were developed based on the high chromium cast iron with 26wt.% Cr (Cr26). The microstructure of SHCCI was investigated by SEM and XRD. The hardness and impact toughness of SHCCI was tested, and the corrosive wear property of SHCCI was also researched using MCF-30 type erosion abrasion tester under H3PO4 medium condition. The results show that the microstructure of SHCCI is composed of carbide of M7C3+M23C6, martensite and retained austenite. With the increase of carbon content, the hardness of SHCCI first increases and then decreases, the toughness increases, and the corrosive wear property decreases. The relative wear resistance of SHCCI is obviously superior to that of Cr26 cast iron, and the maximal relative wear resistance of SHCCI is three times higher than that of Cr26 cast iron.


2004 ◽  
Vol 375-377 ◽  
pp. 589-594 ◽  
Author(s):  
A.H. Kasama ◽  
A.J. Mourisco ◽  
C.S. Kiminami ◽  
W.J. Botta Fo ◽  
C. Bolfarini

Wear ◽  
1993 ◽  
Vol 162-164 ◽  
pp. 83-88 ◽  
Author(s):  
Xi Jun-Tong ◽  
Zhou Qing-De ◽  
Liu Shi-Hui ◽  
Song Guang-Shun

2007 ◽  
Vol 26-28 ◽  
pp. 293-296 ◽  
Author(s):  
Guo Shang Zhang ◽  
Yi Min Gao ◽  
Jian Dong Xing ◽  
Shi Zhong Wei ◽  
Xi Liang Zhang

To improve the wear resistance of high chromium white cast iron under severe abrasive conditions, a composites layer was designed for wear surface, which were locally reinforced with WC particles. And the local composites were successfully fabricated by optimized centrifugal casting process. Then the interface between WC and iron matrix was analyzed with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And three body wear tests were carried out on a self-made rig to investigate the wear resistance of the composites. For comparison, the wear tests of high chromium white cast iron were also carried out under the same conditions. The results show that: There are no defects such as inclusion, crack, gas pore and so on in the obtained composites layer, which with a uniform thickness of 10 mm. WC particles are homogeneously distributed in the composites layer and tightly bonded with the iron matrix. The WC particles are partially dissolved in the iron matrix during centrifugal casting. The elements W, C and Fe react to form new carbides such as Fe3W3C or M23C6, which precipitate around former WC particles during subsequent solidification. So the interface between WC particles and the iron matrix is a strong metallurgical bonding. WC particles in the composites layer can effectively resist cutting by the abrasive, and then protect the matrix. The wear resistance of the composites layer is 7.23 times of that of high chromium cast iron.


Sign in / Sign up

Export Citation Format

Share Document