Being realist(ic) about behavioral variability

2021 ◽  
Vol 31 (3) ◽  
pp. 423-428
Author(s):  
Freek Oude Maatman ◽  
Merlijn Olthof ◽  
Fred Hasselman

Though we concur with the conclusions of the target article by Arocha (2021), in this commentary, we argue that his critiques of psychology’s standard research practices are not grounded in his scientific realism but in a (tacit) realistic theory about human behavioral variability. Then, we argue that both this tacit theory and his recommendations are already encompassed by the complex systems approach to psychology. We conclude that, taken together, these arguments strengthen Arocha’s conclusion and recommendations.

Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 39
Author(s):  
Benjamin L. Turner

Due to tightly coupled physical, chemical, and biological processes that often behave in nonlinear, counterintuitive ways, it is argued that soil is an archetype of a complex system. Unfortunately, human intuition and decision making has been shown to be inadequate when dealing with complex systems. This poses significant challenges for managers or policy makers responding to environmental externalities where soil dynamics play a central role (e.g., biogeochemical cycles) and where full ranges of outcomes result from numerous feedback processes not easily captured by reductionist approaches. In order to improve interpretation of these soil feedbacks, a dynamic systems framework is outlined (capturing feedback often excluded from investigation or left to intuition) and then applied to agroecosystem management problems related to irrigation or tillage practices that drive nutrient cycling (e.g., soil water, nitrogen, carbon, and sodium). Key soil feedbacks are captured via a variety of previously developed models simulating soil processes and their interactions. Results indicated that soil system trade-offs arising from conservation adoption (drip irrigation or no-tillage) provided reasonable supporting evidence (via compensating feedbacks) to managers justifying slow adoption of conservation practices. Modeling soils on the foundation provided in the complex systems sciences remains an area for innovations useful for improving soil system management.


Futures ◽  
2020 ◽  
Vol 115 ◽  
pp. 102490 ◽  
Author(s):  
Lisa Hanna Broska ◽  
Witold-Roger Poganietz ◽  
Stefan Vögele

2018 ◽  
Vol 92 ◽  
pp. 137-141 ◽  
Author(s):  
Antoinette Tordesillas ◽  
Zongzheng Zhou ◽  
Robin Batterham

2017 ◽  
Vol 10 (3) ◽  
pp. 273-284
Author(s):  
Alan Karaev ◽  
Marina Melnichuk ◽  
Timur Guev ◽  
Grzegorz Mentel

2020 ◽  
Author(s):  
Merlijn Olthof ◽  
Fred Hasselman ◽  
Anna Lichtwarck-Aschoff

Background: Psychopathology research is changing focus from group-based ‘disease models’ to a personalized approach inspired by complex systems theories. This approach, which has already produced novel and valuable insights into the complex nature of psychopathology, often relies on repeated self-ratings of individual patients. So far it has been unknown whether such self-ratings, the presumed observables of the individual patient as a complex system, actually display complex dynamics. We examine this basic assumption of a complex systems approach to psychopathology by testing repeated self-ratings for three markers of complexity: memory, the presence of (time-varying) short- and long-range temporal correlations, regime shifts, transitions between different dynamic regimes, and, sensitive dependence on initial conditions, also known as the ‘butterfly effect’, the divergence of initially similar trajectories.Methods: We analysed repeated self-ratings (1476 time points) from a single patient for the three markers of complexity using Bartels rank test, (partial) autocorrelation functions, time-varying autoregression, a non-stationarity test, change point analysis and the Sugihara-May algorithm.Results: Self-ratings concerning psychological states (e.g., the item ‘I feel down’) exhibited all complexity markers: time-varying short- and long-term memory, multiple regime shifts and sensitive dependence on initial conditions. Unexpectedly, self-ratings concerning physical sensations (e.g., the item ‘I am hungry’) exhibited less complex dynamics and their behaviour was more similar to random variables. Conclusions: Psychological self-ratings display complex dynamics. The presence of complexity in repeated self-ratings means that we have to acknowledge that (1) repeated self-ratings yield a complex pattern of data and not a set of (nearly) independent data points, (2) humans are ‘moving targets’ whose self-ratings display non-stationary change processes including regime shifts, and (3) long-term prediction of individual trajectories may be fundamentally impossible. These findings point to a limitation of popular statistical time series models whose assumptions are violated by the presence of these complexity markers. We conclude that a complex systems approach to mental health should appreciate complexity as a fundamental aspect of psychopathology research by adopting the models and methods of complexity science. Promising first steps in this direction, such as research on real-time process-monitoring, short-term prediction, and just-in-time interventions, are discussed.


2018 ◽  
Vol 53 (9) ◽  
pp. 560-569 ◽  
Author(s):  
Adam Hulme ◽  
Jason Thompson ◽  
Rasmus Oestergaard Nielsen ◽  
Gemma J M Read ◽  
Paul M Salmon

ObjectivesThere have been recent calls for the application of the complex systems approach in sports injury research. However, beyond theoretical description and static models of complexity, little progress has been made towards formalising this approach in way that is practical to sports injury scientists and clinicians. Therefore, our objective was to use a computational modelling method and develop a dynamic simulation in sports injury research.MethodsAgent-based modelling (ABM) was used to model the occurrence of sports injury in a synthetic athlete population. The ABM was developed based on sports injury causal frameworks and was applied in the context of distance running-related injury (RRI). Using the acute:chronic workload ratio (ACWR), we simulated the dynamic relationship between changes in weekly running distance and RRI through the manipulation of various ‘athlete management tools’.ResultsThe findings confirmed that building weekly running distances over time, even within the reported ACWR ‘sweet spot’, will eventually result in RRI as athletes reach and surpass their individual physical workload limits. Introducing training-related error into the simulation and the modelling of a ‘hard ceiling’ dynamic resulted in a higher RRI incidence proportion across the population at higher absolute workloads.ConclusionsThe presented simulation offers a practical starting point to further apply more sophisticated computational models that can account for the complex nature of sports injury aetiology. Alongside traditional forms of scientific inquiry, the use of ABM and other simulation-based techniques could be considered as a complementary and alternative methodological approach in sports injury research.


Sign in / Sign up

Export Citation Format

Share Document