Intrafamilial Variability of the R694C Variant in BICD2 Presenting with Lethal Severe Arthrogryposis

2022 ◽  
pp. 097321792110688
Author(s):  
Francisco Ribeiro-Mourão ◽  
Ana Vilan ◽  
Sara Passos-Silva ◽  
Fernando Silveira ◽  
Miguel Leão ◽  
...  

Arthrogryposis multiplex congenita (AMC) is a heterogeneous condition comprising congenital multiple joint contractures, and it is secondary to decreased fetal mobility following environmental/genetic abnormalities. BICD2 pathogenic variants have been associated with autosomal dominant spinal muscular atrophy with lower extremity predominance (SMALED2). We report the case of a newborn with decreased fetal movements and ventriculomegaly diagnosed in utero, born with severe AMC, multiple bone fractures, congenital hip dislocation, and respiratory insufficiency that led to neonatal death. His mother had AMC diagnosis without established etiology. Her phenotype characterization was key to guide the genetic investigation. A BICD 2 heterozygous variant (NM_001003800.1; c.2080C > T; p. [Arg694Cys]) was detected both in the mother and the newborn. This variant had previously been reported in 3 cases, all having de novo severe SMALED-type 2B (MIM#618291) phenotype. This is the first report of this variant (p. [Arg694Cys]) presenting with an inherited, severe, and lethal phenotype associated to intrafamilial variability, suggesting a more complex phenotype-genotype correlation than previously stated.

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Guanghui Zhu ◽  
Yu Zheng ◽  
Yaoxi Liu ◽  
An Yan ◽  
Zhengmao Hu ◽  
...  

Abstract Background Congenital pseudarthrosis of the tibia (CPT) is a rare disease. Some patients present neurofibromatosis type 1 (NF1), while some others do not manifest NF1 (non-NF1). The etiology of CPT, particularly non-NF1 CPT, is not well understood. Here we screened germline variants of 75 CPT cases, including 55 NF1 and 20 non-NF1. Clinical data were classified and analyzed based on NF1 gene variations to investigate the genotype-phenotype relations of the two types of patients. Results Using whole-exome sequencing and Multiplex Ligation-Dependent Probe Amplification, 44 out of 55 NF1 CPT patients (80.0%) were identified as carrying pathogenic variants of the NF1 gene. Twenty-five variants were novel; 53.5% of variants were de novo, and a higher proportion of their carriers presented bone fractures compared to inherited variant carriers. No NF1 pathogenic variants were found in all 20 non-NF1 patients. Clinical features comparing NF1 CPT to non-NF1 CPT did not show significant differences in bowing or fracture onset, lateralization, tissue pathogenical results, abnormality of the proximal tibial epiphysis, and follow-up tibial union after surgery. A considerably higher proportion of non-NF1 patients have cystic lesion (Crawford type III) and used braces after surgery. Conclusions We analyzed a large cohort of non-NF1 and NF1 CPT patients and provided a new perspective for genotype-phenotype features related to germline NF1 variants. Non-NF1 CPT in general had similar clinical features of the tibia as NF1 CPT. Germline NF1 pathogenic variants could differentiate NF1 from non-NF1 CPT but could not explain the CPT heterogeneity of NF1 patients. Our results suggested that non-NF1 CPT was probably not caused by germline NF1 pathogenic variants. In addition to NF1, other genetic variants could also contribute to CPT pathogenesis. Our findings would facilitate the interpretation of NF1 pathogenic variants in CPT genetic counseling.


2020 ◽  
Vol 182 (1) ◽  
pp. K1-K6 ◽  
Author(s):  
Yunting Lin ◽  
Yanna Cai ◽  
Jianan Xu ◽  
Chunhua Zeng ◽  
Huiying Sheng ◽  
...  

Objective X-linked hypophosphatemic rickets (XLHR) is the most common form of inherited rickets caused by pathogenic variants of PHEX gene with an X-linked dominant inheritance pattern. Precise molecular diagnosis of pathogenic variant will benefit the genetic counseling and prenatal diagnosis for the family with XLHR. Here, we presented an ‘isolated’ germline mosaicism in the phenotypically normal father of a girl with XLHR. Methods and results For the initial molecular screen of PHEX gene, DNA samples of the proband and her parents were extracted from their peripheral blood samples respectively. Sanger sequencing found a ‘de novo’ novel heterozygous variant, c.1666C>T(p.Q556X), at the PHEX gene in the proband, but not in her phenotypically healthy parents. Due to an occasional abnormality of his serum phosphate previously, further examinations for the father were taken to exclude the possibility of paternal mosaicism. Eight samples from different tissues were analyzed for PHEX gene by Sanger sequencing. Surprisingly, one ‘isolated’ germline mosaicism was detected only in his sperm with an estimated frequency of 26.67%. The mosaic allele was identical to the c.1666C>T(p.Q556X) variant in the proband. Conclusions This is the first case of ‘isolated’ germline mosaicism with pathogenic PHEX variant. Our study provides accurate diagnosis and valuable counseling for this family. This report also alerts clinicians and geneticists to exclude the possibility of the isolated germline mosaicism and prevent intrafamilial recurrences of inherited diseases.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1395
Author(s):  
Valentina Bruni ◽  
Cristina Barbara Spoleti ◽  
Andrea La Barbera ◽  
Vincenzo Dattilo ◽  
Emma Colao ◽  
...  

Achondrogenesis type II (ACG2) is a lethal skeletal dysplasia caused by dominant pathogenic variants in COL2A1. Most of the variants found in patients with ACG2 affect the glycine residue included in the Gly-X-Y tripeptide repeat that characterizes the type II collagen helix. In this study, we reported a case of a novel splicing variant of COL2A1 in a fetus with ACG2. An NGS analysis of fetal DNA revealed a heterozygous variant c.1267-2_1269del located in intron 20/exon 21. The variant occurred de novo since it was not detected in DNA from the blood samples of parents. We generated an appropriate minigene construct to study the effect of the variant detected. The minigene expression resulted in the synthesis of a COL2A1 messenger RNA lacking exon 21, which generated a predicted in-frame deleted protein. Usually, in-frame deletion variants of COL2A1 cause a phenotype such as Kniest dysplasia, which is milder than ACG2. Therefore, we propose that the size and position of an in-frame deletion in COL2A1 may be relevant in determining the phenotype of skeletal dysplasia.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Yo Hamaguchi ◽  
Mikihiro Aoki ◽  
Satoshi Watanabe ◽  
Hiroyuki Mishima ◽  
Koh-ichiro Yoshiura ◽  
...  

AbstractHeterozygous pathogenic variants in the KAT6B gene, which encodes lysine acetyltransferase 6B, have been identified in patients with congenital rare disorders, including genitopatellar syndrome and Say-Barber-Biesecker-Young-Simpson syndrome. Herein, we report another Japanese patient with a KAT6B-related disorder and a novel de novo heterozygous variant in exon 18 of KAT6B [c.3925dup, p.(Glu1309fs*33)], providing further evidence that truncating variants in exon 17 and in the proximal region of exon 18 are associated with genitopatellar syndrome-like phenotypes.


2021 ◽  
pp. jmedgenet-2020-107595
Author(s):  
Annie Laquerriere ◽  
Dana Jaber ◽  
Emanuela Abiusi ◽  
Jérome Maluenda ◽  
Dan Mejlachowicz ◽  
...  

BackgroundArthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families.MethodsSeveral genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants.ResultsWe achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%).ConclusionNew genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xianyu Liu ◽  
Qiyang Shen ◽  
Guo Zheng ◽  
Hu Guo ◽  
Xiaopeng Lu ◽  
...  

Objective: The genetic aetiology of epileptic encephalopathy (EE) is growing rapidly based on next generation sequencing (NGS) results. In this single-centre study, we aimed to investigate a cohort of Chinese children with early infantile epileptic encephalopathy (EIEE).Methods: NGS was performed on 50 children with unexplained EIEE. The clinical profiles of children with pathogenic variants were characterised and analysed in detail. Conservation analysis and homology modelling were performed to predict the impact of STXBP1 variant on the protein structure.Results: Pathogenic variants were identified in 17 (34%) of 50 children. Sixteen variants including STXBP1 (n = 2), CDKL5 (n = 2), PAFAH1B1, SCN1A (n = 9), SCN2A, and KCNQ2 were de novo, and one (PIGN) was a compound heterozygous variant. The phenotypes of the identified genes were broadened. PIGN phenotypic spectrum may include EIEE. The STXBP1 variants were predicted to affect protein stability.Significance: NGS is a useful diagnostic tool for EIEE and contributes to expanding the EIEE-associated genotypes. Early diagnosis may lead to precise therapeutic interventions and can improve the developmental outcome.


2019 ◽  
Author(s):  
Weiliang Lu ◽  
Mingxing Liang ◽  
Jiasun Su ◽  
Jin Wang ◽  
Lingxiao Li ◽  
...  

Abstract Background: A very limited spectrum of ASCC1 pathogenic variants had been reported in five (mostly consanguineous) families with spinal muscular atrophy with congenital bone fractures 2 [OMIM #616867] since 2016. Methods:A proband from a non-consanguineous Chinese family presented with neonatal severe hypotonia, respiratory distress, muscle weakness and atrophy, as well as congenital bone fractures was examined by exome sequencing. Results: A compound heterozygosity of a nonsense (c.932C>G ,p.Ser311Ter) and an exon 5 deletion in ASCC1 segregating with phenotypes was detected, both variants are novel and pathogenic. Since ASCC1 is a relative new disease gene, we performed the gene curation following ClinGen SOP. The existing evidence is sufficient to support a "Definitive" level of disease-gene relationship. Conclusion: This case report expended the mutation spectrum of ASCC1 and support the notion that this novel disease also occur in outbreed populations and this is a rare disease but may still be underdiagnosed due to its perinatal lethal outcomes. Keywords: spinal muscular atrophy with congenital bone fractures 2; ASCC1 ; compound heterozygous; gene curation; exome sequencing


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
pp. jmedgenet-2020-107427
Author(s):  
Aviel Ragamin ◽  
Carolina C Gomes ◽  
Karen Bindels-de Heus ◽  
Renata Sandoval ◽  
Angelia V Bassenden ◽  
...  

BackgroundPathogenic germline variants in Transient Receptor Potential Vanilloid 4 Cation Channel (TRPV4) lead to channelopathies, which are phenotypically diverse and heterogeneous disorders grossly divided in neuromuscular disorders and skeletal dysplasia. We recently reported in sporadic giant cell lesions of the jaws (GCLJs) novel, somatic, heterozygous, gain-of-function mutations in TRPV4, at Met713.MethodsHere we report two unrelated women with a de novo germline p.Leu619Pro TRPV4 variant and an overlapping systemic disorder affecting all organs individually described in TRPV4 channelopathies.ResultsFrom an early age, both patients had several lesions of the nervous system including progressive polyneuropathy, and multiple aggressive giant cell-rich lesions of the jaws and craniofacial/skull bones, and other skeletal lesions. One patient had a relatively milder disease phenotype possibly due to postzygotic somatic mosaicism. Indeed, the TRPV4 p.Leu619Pro variant was present at a lower frequency (variant allele frequency (VAF)=21.6%) than expected for a heterozygous variant as seen in the other proband, and showed variable regional frequency in the GCLJ (VAF ranging from 42% to 10%). In silico structural analysis suggests that the gain-of-function p.Leu619Pro alters the ion channel activity leading to constitutive ion leakage.ConclusionOur findings define a novel polysystemic syndrome due to germline TRPV4 p.Leu619Pro and further extend the spectrum of TRPV4 channelopathies. They further highlight the convergence of TRPV4 mutations on different organ systems leading to complex phenotypes which are further mitigated by possible post-zygotic mosaicism. Treatment of this disorder is challenging, and surgical intervention of the GCLJ worsens the lesions, suggesting the future use of MEK inhibitors and TRPV4 antagonists as therapeutic modalities for unmet clinical needs.


Sign in / Sign up

Export Citation Format

Share Document