Leptospiral meningoencephalitis in a raccoon dog

2021 ◽  
Vol 33 (6) ◽  
pp. 1137-1141
Author(s):  
Risako Yamashita ◽  
Toshinori Yoshida ◽  
Mio Kobayashi ◽  
Suzuka Uomoto ◽  
Saori Shimizu ◽  
...  

Neuroleptospirosis is a rare disease caused by pathogenic Leptospira interrogans in humans; however, it has not been fully studied in animals. A young wild raccoon dog was found convulsing in the recumbent position and died the next day. Histologic examination revealed nonsuppurative meningoencephalitis in the cerebrum, cerebellum, midbrain, and medulla oblongata. The lesions consisted of mixed infiltrates of Iba1-positive macrophages and CD3-positive T cells, with a small number of CD79α-positive B cells and myeloperoxidase-positive neutrophils. In the frontal cortex, perivascular cuffs and adjacent microglial nodules were distributed diffusely, especially in the molecular layer. Glial nodules were comprised of Iba1- and myeloperoxidase-positive activated microglia. Immunohistochemistry revealed leptospires in mononuclear cell perivascular cuffs, but not in glial nodules. Neuroleptospirosis was accompanied by Leptospira-related nonsuppurative interstitial nephritis, pulmonary edema and hemorrhage, and coronary periarteritis, as well as Toxocara tanuki in the small intestine and nonspecific foreign-body granulomas in the lungs and stomach.

2005 ◽  
Vol 22 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Mira Wouters ◽  
Karine Smans ◽  
Jean-Marie Vanderwinden

In the small intestine, interstitial cells of Cajal (ICC) surrounding the myenteric plexus generate the pacemaking slow waves that are essential for an efficient intestinal transit. The underlying molecular mechanisms of the slow wave are poorly known. KIT is currently the sole practical marker for ICC. Attempts to purify living ICC have so far largely failed, due to the loss of the KIT epitope during enzymatic dissociation. Aiming to identify and isolate living ICC, we designed a knock-in strategy to express a fluorescent tag in KIT-expressing cells by inserting the sequence of the novel green fluorescent protein ZsGreen into the first exon of the c-Kit gene, creating a null allele called WZsGreen. In the gastrointestinal tract of heterozygous WZsGreen/+ mice, tiny ZsGreen fluorescent dots were observed in all KIT-expressing ICC populations, with exception of ICC at the deep muscular plexus in small intestine. During development of the gastrointestinal tract, ZsGreen expression followed KIT expression in a spatiotemporal way. Stellate and basket KIT-expressing cells in the molecular layer of the cerebellum also exhibited ZsGreen dots, whereas no ZsGreen was detected in skin, testis, and bone marrow. ZsGreen dot-containing intestinal cells could be isolated from jejunum and maintained alive in culture for at least 3 days. ZsGreen is a suitable alternative to EGFP in transgenic animals. The novel WZsGreen/+ model reported here appears to be a promising tool for live studies of KIT-expressing cells in the gastrointestinal tract and cerebellum and for the further analysis of pacemaker mechanisms.


2001 ◽  
Vol 100 (s44) ◽  
pp. 13P-14P
Author(s):  
M Kamal ◽  
D Wakelin ◽  
A Smith ◽  
A Ouellette ◽  
DK Podolsky ◽  
...  

1996 ◽  
Vol 7 (2) ◽  
pp. 433-437
Author(s):  
Dong-Gun Lee ◽  
Jae-Woo Lee ◽  
Il-Woo Lee ◽  
Soo-Geun Wang

2016 ◽  
Vol 150 (4) ◽  
pp. S578
Author(s):  
Jonathan Jacobs ◽  
Lin Lin ◽  
Venu Lagishetty ◽  
Paul Ruegger ◽  
James Borneman ◽  
...  
Keyword(s):  
T Cells ◽  

Author(s):  
Raquel Bartolomé-Casado ◽  
Ole J. B. Landsverk ◽  
Sudhir Kumar Chauhan ◽  
Frank Sætre ◽  
Kjersti Thorvaldsen Hagen ◽  
...  

1998 ◽  
Vol 114 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Øyvind Molberg ◽  
Ellen M. Nilsen ◽  
Ludvig M. Sollid ◽  
Helge Scott ◽  
Per Brandtzaeg ◽  
...  

2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Masayuki Fujino ◽  
Hirotaka Sato ◽  
Tomotaka Okamura ◽  
Akihiko Uda ◽  
Satoshi Takeda ◽  
...  

ABSTRACT Glycosylation of Env defines pathogenic properties of simian immunodeficiency virus (SIV). We previously demonstrated that pathogenic SIVmac239 and a live-attenuated, quintuple deglycosylated Env mutant (Δ5G) virus target CD4+ T cells residing in different tissues during acute infection. SIVmac239 and Δ5G preferentially infected distinct CD4+ T cells in secondary lymphoid organs (SLOs) and within the lamina propria of the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323–9336, 2012, https://doi.org/10.1128/JVI.00948-12 ). Here, we studied the host responses relevant to SIV targeting of CXCR3+ CCR5+ CD4+ T cells in SLOs. Genome-wide transcriptome analyses revealed that Th1-polarized inflammatory responses, defined by expression of CXCR3 chemokines, were distinctly induced in the SIVmac239-infected animals. Consistent with robust expression of CXCL10, CXCR3+ T cells were depleted from blood in the SIVmac239-infected animals. We also discovered that elevation of CXCL10 expression in blood and SLOs was secondary to the induction of CD14+ CD16+ monocytes and MAC387+ macrophages, respectively. Since the significantly higher levels of SIV infection in SLOs occurred with a massive accumulation of infiltrated MAC387+ macrophages, T cells, dendritic cells (DCs), and residential macrophages near high endothelial venules, the results highlight critical roles of innate/inflammatory responses in SIVmac239 infection. Restricted infection in SLOs by Δ5G also suggests that glycosylation of Env modulates innate/inflammatory responses elicited by cells of monocyte/macrophage/DC lineages. IMPORTANCE We previously demonstrated that a pathogenic SIVmac239 virus and a live-attenuated, deglycosylated mutant Δ5G virus infected distinct CD4+ T cell subsets in SLOs and the small intestine, respectively (C. Sugimoto et al., J Virol 86:9323–9336, 2012, https://doi.org/10.1128/JVI.00948-12 ). Accordingly, infections with SIVmac239, but not with Δ5G, deplete CXCR3+ CCR5+ CD4+ T (Th1) cells during the primary infection, thereby compromising the cellular immune response. Thus, we hypothesized that distinct host responses are elicited by the infections with two different viruses. We found that SIVmac239 induced distinctly higher levels of inflammatory Th1 responses than Δ5G. In particular, SIVmac239 infection elicited robust expression of CXCL10, a chemokine for CXCR3+ cells, in CD14+ CD16+ monocytes and MAC387+ macrophages recently infiltrated in SLOs. In contrast, Δ5G infection elicited only modest inflammatory responses. These results suggest that the glycosylation of Env modulates the inflammatory/Th1 responses through the monocyte/macrophage subsets and elicits marked differences in SIV infection and clinical outcomes.


2015 ◽  
Vol 9 (12) ◽  
pp. e0004286 ◽  
Author(s):  
Leandro C. D. Breda ◽  
Ching-Lin Hsieh ◽  
Mónica M. Castiblanco Valencia ◽  
Ludmila B. da Silva ◽  
Angela S. Barbosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document