Piezoelectric stick-slip actuators with flexure hinge mechanisms: A review

Author(s):  
Guangda Qiao ◽  
Hengyu Li ◽  
Xiaohui Lu ◽  
Jianming Wen ◽  
Tinghai Cheng

Piezoelectric stick-slip actuators (PSSAs) are famous for ultimate working condition adaptability, simple structure, and positioning accuracy. To meet the demand of industrial application, lots of PSSAs designed with flexure hinge mechanisms (FHMs-PSSAs) have been developed to realize the requirements of translational motion, rotational motion, multi-degree-of-freedom (multi-DOF) motion. The output performance of the FHMs-PSSAs has been greatly improved, including load capacity, speed, and accuracy; moreover, some approaches to solve the problem of the backward motion are provided as well. In this work, the working principle of FHMs-PSSAs is introduced, and the excitation signals applicable to FHMs-PSSAs are summarized. Based on the current research and development status, the progress of structure design of FHMs-PSSAs is introduced in accordance with translatory FHMs-PSSAs, rotary FHMs-PSSAs, and multi-DOF FHMs-PSSAs. Additionally, the developed analysis methods and design schemes to improve the performance are introduced, including theoretical analysis methods, consistency scheme of forward and reverse performance, suppression scheme of the backward motion, and improvement scheme of positioning accuracy. The significance of this work can be regarded as a further supplement to the previous review articles on the PSSAs, which will provide a reference and guidance for the future development of FHMs-PSSAs.

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 765
Author(s):  
Junhui Zhu ◽  
Peng Pan ◽  
Yong Wang ◽  
Sen Gu ◽  
Rongan Zhai ◽  
...  

The piezoelectrically-actuated stick-slip nanopositioning stage (PASSNS) has been applied extensively, and many designs of PASSNSs have been developed. The friction force between the stick-slip surfaces plays a critical role in successful movement of the stage, which influences the load capacity, dynamic performance, and positioning accuracy of the PASSNS. Toward solving the influence problems of friction force, this paper presents a novel stick-slip nanopositioning stage where the flexure hinge-based friction force adjusting unit was employed. Numerical analysis was conducted to estimate the static performance of the stage, a dynamic model was established, and simulation analysis was performed to study the dynamic performance of the stage. Further, a prototype was manufactured and a series of experiments were carried out to test the performance of the stage. The results show that the maximum forward and backward movement speeds of the stage are 1 and 0.7 mm/s, respectively, and the minimum forward and backward step displacements are approximately 11 and 12 nm, respectively. Compared to the step displacement under no working load, the forward and backward step displacements only increase by 6% and 8% with a working load of 20 g, respectively. And the load capacity of the PASSNS in the vertical direction is about 72 g. The experimental results confirm the feasibility of the proposed stage, and high accuracy, high speed, and good robustness to varying loads were achieved. These results demonstrate the great potential of the developed stage in many nanopositioning applications.


2021 ◽  
Author(s):  
Tinghai Cheng ◽  
Xiaosong Zhang ◽  
Xiaohui Lu ◽  
Hengyu Li ◽  
Qi Gao ◽  
...  

Piezoelectric stick–slip actuators have become viable candidates for precise positioning and precise metering due to simple structure and long stroke. To improve the performances of the piezoelectric stick–slip actuators, our team deeply studies the actuators from both structural designs and driving methods. In terms of structural designs, the trapezoid-type, asymmetrical flexure hinges and mode conversion piezoelectric stick–slip actuators are proposed to improve the velocity and load based on the asymmetric structure; besides, a piezoelectric stick–slip actuator with a coupled asymmetrical flexure hinge mechanism is also developed to achieve the bidirectional motion. In terms of driving methods, a non-resonant mode smooth driving method (SDM) based on ultrasonic friction reduction is first proposed to restrain the backward motion during the rapid contraction stage. Then, a resonant mode SDM is further developed to improve the output performance of the piezoelectric stick–slip actuator. On this basis, the low voltage and symmetry of the SDM are also discussed. Finally, the direction-guidance hybrid method (DGHM) excitation method is presented to achieve superior performance, especially for high speed.


2014 ◽  
Vol 635-637 ◽  
pp. 1299-1302 ◽  
Author(s):  
Xiao Li ◽  
Han Xu Sun ◽  
Ying Wen Tang ◽  
Jing Zhou Song

A novel structure design method to improve the output performance in course of modular robot is presented in this paper. The new design parameter of modular joint is defined based on analysis of existing joint. Output torque and Max speed is increased by means of different Brushless DC-Servomotor and harmonic reducer in limited interspace. The repeated positioning accuracy is not reduced when output torque and Max speed are increased. And parts of the process parameters is improved. The new design parameters show that the design method is feasible.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 154
Author(s):  
Zheng Li ◽  
Zhirong Su ◽  
Liang Zhao ◽  
Haitao Han ◽  
Zhanyu Guo ◽  
...  

A novel piezoelectric actuator using a two-stage flexure hinge structure is proposed in this paper, which is used in a compact and high-precision electromechanical field. The two-stage flexure hinge structure is used to provide horizontal thrust and vertical clamping force to the driving feet, which solves the problems of unstable clamping force and insufficient load capacity in traditional stick-slip piezoelectric actuators. Firstly, the main structure of the driver and the working process under the triangular wave excitation voltage are briefly introduced. Secondly, after many simulation tests, the structure of the actuator is optimized and the stability of the structure in providing clamping force is verified. Finally, through the research of the operating performance, when the amplitude is 150 V and the frequency is 3.25 kHz as the excitation source, the maximum speed can reach 338 mm/s and can bear about 3 kg load. It can be seen from the analysis that the two-stage flexure hinge structure can improve the displacement trajectory.


2020 ◽  
Vol 31 (17) ◽  
pp. 1961-1972
Author(s):  
Xiaohui Lu ◽  
Qiang Gao ◽  
Qi Gao ◽  
Yang Yu ◽  
Xiaosong Zhang ◽  
...  

A stick-slip piezoelectric actuator with bidirectional motion is proposed and measured, which uses coupled asymmetrical flexure hinge mechanisms and symmetrical indenter to generate controllable tangential displacement. The operating principle of the proposed stick-slip actuator is illustrated, and the normal force variation between the stator and slider is analyzed. A dynamic model based on the method of dimensionality reduction is established to simulate the displacement and load capacity. In order to obtain improved actuator properties, the design rules of the coupled flexure hinge mechanisms are discussed, and the tangential and normal displacements of the indenter are investigated by the finite element method. A prototype is fabricated, and the experiment investigation of the actuator characteristics is presented. Testing results indicate that the actuator achieves the maximum output velocity of 10.14 mm/s and its maximum load reaches 1.5 N under a voltage of 100 Vp–p and a frequency of 850 Hz in the positive x-direction. The maximum efficiency of the actuator is 0.57% with a load of 90 g, a locking force of 5 N, and the actuated velocity of 5.48 mm/s. In addition, experimental results confirm the feasibility of the presented model by comparing numerical simulation results.


2010 ◽  
Vol 139-141 ◽  
pp. 788-791
Author(s):  
Quan Guo Lu ◽  
Ding Fang Chen ◽  
Ji Quan HU ◽  
Ya Peng Zhao

Piezoelectric (PZT) material is widely used to drive micro-positioning platform, but the energy density of PZT is low, which restricts the application of PZT micro-positioning platform. In order to overcome its disadvantages, A kind of new micro-positioning platform actuated by giant magnetostrictive material (GMM) was presented in the paper. Based on integrated optimization method, structure designing, magnetic circuit designing and temperature control designing were carried out. The dynamic performance of GMM micro-positioning platform was simulated, and simulation result shows the designing is feasible. The prototype was manufactured, and the measurement system was set up. The experiments on the platform were carried out, and experiment results show that the platform has good output performance with positioning accuracy of ±0.03μm and load capacity of 50kg, and can meets the requirements of large-power system.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


2009 ◽  
Vol 407-408 ◽  
pp. 159-162
Author(s):  
Hua Wei Chen ◽  
Ichiro Hagiwara

One novel long-travel piezoelectric-driven linear micropositioning stage capable of moving in a stepping mode is developed. The stick-slip friction effect between flexure hinge actuation tips with a sliding stage is used to drive the stage step-by-step through an enlarged displacement of piezoelectric actuator. In order to enlarge the travel range, magnifying mechanism is optimally designed by use of flexure hinge and lever beam. Moreover, dynamic model of such stage is proposed by consideration of reset integrator stick-slip model. The simulation results show that the stage has considerable good dynamic properties.


2011 ◽  
Vol 328-330 ◽  
pp. 628-632
Author(s):  
Kui Hua Geng ◽  
Meng Tang ◽  
Hong Dong Yu ◽  
Ai Nong Geng ◽  
Shi Guang Du

The structure and working principle of a new translational piston compressor was introduced in this paper. Its piston works in a way of translational motion, hence reduces the piston’s relative velocity to cylinder and cap, as well as friction and wear. In order to avoid vane detaching from piston, simulations were carried out regarding the pre-tightening spring and an optimal preload of the spring was obtained. By analyzed and compared to conventional rolling piston compressor in term of contact force between vane and piston, it was pointed out that the new compressor possessed advantage of kinetic characteristic and is more suitable for the situation of high rotary speed.


Sign in / Sign up

Export Citation Format

Share Document