A general method for projective-lag synchronization of heterogeneous chaotic maps with different dimensions

2021 ◽  
pp. 107754632110264
Author(s):  
Cun-Fang Feng ◽  
Hai-Jun Yang ◽  
Cai Zhou

Projective-lag synchronization of complex systems has attracted much attention in the past two decades. However, the majority of previous studies concentrated on continuous-time chaotic systems or discrete-time chaotic systems with the same dimensions. In our present study, a general method for projective-lag synchronization of different discrete-time chaotic systems characterized with different dimensions is first demonstrated. On the basis of stability theory of discrete-time dynamical systems and Lyapunov stability theory, general controllers are designed by using the active control method. The method could achieve projective-lag synchronization in both cases: [Formula: see text] and [Formula: see text]. The effectiveness and feasibility of the proposed method is demonstrated by the projective-lag synchronization between two-dimensional Lorenz discrete-time system and three-dimensional Stefanski map, as well as between the three-dimensional generalized Hénon map and the two-dimensional quadratic map, respectively.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Adel Ouannas

The problems of full-state hybrid projective synchronization (FSHPS) and inverse full-state hybrid projective synchronization (IFSHPS) for general discrete chaotic systems are investigated in 2D. Based on nonlinear control method and Lyapunov stability theory, new controllers are designed to study FSHPS and IFSHPS, respectively, for 2D arbitrary chaotic systems in discrete-time. Numerical example and simulations are used to validate the main results of this paper.


2014 ◽  
Vol 25 (11) ◽  
pp. 1450068 ◽  
Author(s):  
Ghada Al-Mahbashi ◽  
Mohd Salmi Md Noorani ◽  
Sakhinah Abu Bakar

This paper investigates projective lag synchronization (PLS) behavior between chaotic systems in drive-response dynamical networks (DRDNs) model with nonidentical nodes. A hybrid feedback control method is designed to achieve the PLS with and without mismatched terms. Specially, the coupling matrix in this model is not assumed to be symmetric, diffusive or irreducible. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Xiuli Chai ◽  
Zhihua Gan ◽  
Chunxiao Shi

Modified function projective lag synchronization (MFPLS) of uncertain hyperchaotic dynamical systems with the same or different dimensions and structures is studied. Based on Lyapunov stability theory, a general theorem for controller designing, parameter update rule designing, and control gain strength adapt law designing is introduced by using adaptive control method. Furthermore, the scheme is applied to four typical examples: MFPLS between two five-dimensional hyperchaotic systems with the same structures, MFPLS between two four-dimensional hyperchaotic systems with different structures, MFPLS between a four-dimensional hyperchaotic system and a three-dimensional chaotic system and MFPLS between a novel three-dimensional chaotic system, and a five-dimensional hyperchaotic system. And the system parameters are all uncertain. Corresponding numerical simulations are performed to verify and illustrate the analytical results.


Author(s):  
Hamed Tirandaz ◽  
Mohsen Ahmadnia ◽  
Hamid Reza Tavakoli

In this paper, the synchronization problem of T chaotic system and Lu chaotic system is studied. The parameter of the drive T chaotic system is considered unknown. An adaptive projective lag control method and also parameter estimation law are designed to achieve chaos synchronization problem between two chaotic systems. Then Lyapunov stability theorem is utilized to prove the validity of the proposed control method. After that, some numerical simulations are performed to assess the performance of the proposed method. The results show high accuracy of the proposed method in control and synchronization of chaotic systems.


2022 ◽  
Author(s):  
Wenhao Yan ◽  
Zijing Jiang ◽  
Qun Ding

Abstract The physical implementation of continuoustime memristor makes it widely used in chaotic circuits, whereas discrete-time memristor has not received much attention. In this paper, the backward-Euler method is used to discretize TiO2 memristor model, and the discretized model also meets the three fingerprinter characteristics of the generalized memristor. The short period phenomenon and uneven output distribution of one-dimensional chaotic systems affect their applications in some fields, so it is necessary to improve the dynamic characteristics of one-dimensional chaotic systems. In this paper, a two-dimensional discrete-time memristor model is obtained by linear coupling the proposed TiO2 memristor model and one-dimensional chaotic systems. Since the two-dimensional model has infinite fixed points, the stability of these fixed points depends on the coupling parameters and the initial state of the discrete TiO2 memristor model. Furthermore, the dynamic characteristics of one-dimensional chaotic systems can be enhanced by the proposed method. Finally, we apply the generated chaotic sequence to secure communication.


Sign in / Sign up

Export Citation Format

Share Document