Vibration control of an unbalanced system using a quasi-zero stiffness vibration isolator with fluidic actuators and composite material: An experimental study

2022 ◽  
pp. 107754632110514
Author(s):  
Sivakumar Solaiachari ◽  
Jayakumar Lakshmipathy

In this study, a new type of vibration isolator based on fluidic actuators and a composite slab was tested experimentally with an unbalanced disturbance. Quasi-zero stiffness vibration isolation techniques are advanced and provide effective isolation performance for non-nominal loads. The isolation performance of the proposed isolator was compared to that of a nonlinear vibration isolator equipped with fluidic actuators and a mechanical coil spring (NLVIFA). The NLVIFA system is better suited to non-nominal loads; however, the mechanical spring axial deflection leads to limited amplitude reduction in the system. To address this issue, a cross buckled slab was developed to replace a mechanical coil spring for absorbing vertical deflection by transverse bending, which is made of a specially developed composite material of Basalt fiber reinforced with epoxy resin and enhanced with graphene nano pellets. This current study was concerned with the theoretical analysis and experimental investigations of the proposed nonlinear vibration isolator with fluidic actuators and composite material (NLVIFA-CM), which performs under quasi-zero stiffness characteristics. Because of its reduced axial deflection, the theoretical and experimental results show that the NLVIFA-CM system outperforms the NLVIFA system and other linear type vibration isolators in terms of isolation performance. Furthermore, the proposed vibration isolator makes a significant contribution to low-frequency vibration.

2012 ◽  
Vol 152-154 ◽  
pp. 1077-1081 ◽  
Author(s):  
Zhao Qi He ◽  
Yu Chao Song ◽  
Hong Liang Yu

A nonlinear spring-mass model is established to study the dynamic characteristics of nonlinear vibration isolator. By use of ADAMS software, the influence of stiffness, foundation displacement excitation and frequency of external excitation on the nonlinear vibration isolation systems are analyzed. Results indicate that the linear vibration system needs 4s to achieve stability, but the nonlinear vibration system only needs 0.1s. The response value increases with the increase of excitation frequency, the response pick value increases by 61.58% and 102.35% and each corresponding stable value increases by 159.35% and 309.87%.


2019 ◽  
Vol 25 (19-20) ◽  
pp. 2667-2677 ◽  
Author(s):  
Zhenhua Zhou ◽  
Shuhan Chen ◽  
Dun Xia ◽  
Jianjun He ◽  
Peng Zhang

A negative stiffness element is always employed to generate high-static–low-dynamic stiffness characteristic of the vibration isolator, reduce the resonance frequency of the isolator, and improve the vibration isolation performance under low and ultra-low frequency excitation. In this paper, a new compact negative stiffness permanent magnetic spring (NSPMS) that is composed of two axial-magnetized permanent magnetic rings is proposed. An analytical expression of magnetic negative stiffness of the NSPMS is deduced by using the Coulombian model. After analyzing the effect of air-gap width, air-gap position, height difference between the inner ring and outer ring on the negative stiffness characteristic, a design procedure is proposed to realize the negative stiffness characteristic with a global minimum linear component and uniformity stiffness near the equilibrium position. Finally, an experimental prototype is developed to validate the effectiveness of the NSPMS. The experimental results show that combining a vibration isolator with the NSPMS in parallel can lower the natural frequency and improve the isolation performance of the isolator.


2021 ◽  
Author(s):  
Xinghua Zhou ◽  
Dingxuan Zhao ◽  
Xiao Sun ◽  
Xiao Yang ◽  
Jianhai Zhang ◽  
...  

Abstract A novel passive asymmetric quasi-zero stiffness vibration isolator (AQZS-VI) comprising two linear springs acting in parallel with one negative stiffness element (NSE) is proposed, of which the NSE is mainly constructed by the combination of cantilever plate spring and L-shaped lever (CPS-LSL). The static model of the isolator is deduced considering the geometrical nonlinearity of the NSE and the bending deformation of plate spring. The nonlinear stiffness properties of the CPS-LSL and the AQZS-VI, as well as the nonlinear damping properties of the AQZS-VI are discussed. The absolute displacement transmissibility of the AQZS-VI under base displacement excitation is obtained using Harmonic Balance Method, and the effects of different excitation amplitudes and damping factors on the vibration isolation performance are analyzed. Better than other quasi-zero stiffness vibration isolators (QZS-VI) whose NSEs do not provide supporting force at zero stiffness point, the NSE of the AQZS-VI provides more supporting force than the parallel connected linear springs, which is very beneficial for improving the bearing capacity of the isolator. Compared with a typical symmetric QZS-VI with same damping property, the AQZS-VI has longer stroke with low stiffness and lower peak value of displacement transmissibility. The prototype experiments indicate that the AQZS-VI outperforms the linear counterpart with much smaller starting frequency of vibration isolation and lower displacement transmissibility. The proposed AQZS-VI has great potential for applying in various engineering practices with superior vibration isolation performance.


Author(s):  
Rong-Jun Jiang ◽  
Shi-Jian Zhu

Taking single degree of freedom vibration isolation system under simple harmonic excitation as an example, and considering the energy, the vibration isolation performance in different conditions was studied theoretically and numerically. The results shows that when the simple harmonic excitation import energy is definite, the vibration isolation performance at the primary harmonic frequency of the nonlinear vibration isolation system is better than that of the linear system, and the vibration isolation performance of the nonlinear vibration isolation system in chaotic vibration state is much better than that in non-chaotic vibration state. For the same isolated object, if can let the vibration isolation system vibrate chaotically, the system will possess the best isolation performance at the primary frequency.


2019 ◽  
Vol 5 ◽  
pp. 22
Author(s):  
Iryna Romanenko ◽  
Maryna Holiuk ◽  
Pavlo Kutsyn ◽  
Iryna Kutsyna ◽  
Hennadii Odynokin ◽  
...  

A new composite material with neutron radiation shielding properties is presented. This fiber reinforced concrete material incorporates basalt-boron fiber, with different concentrations of boron oxide in fiber, and is applicable to nuclear energy and nuclear waste management. The methodology for production of boron oxide (B2O3) infused basalt fiber has been developed. First experimental samples of basalt boron fiber containing 6% of B2O3 and 12% B2O3 have been produced in laboratory conditions. The concrete samples reinforced by two types of basalt-boron fiber with different dosages have been prepared for neutron experiment. The neutron experimental investigations on radiation shielding properties of concrete reinforced by basalt-boron fiber have been performed by means of Pu-Be neutron source. The prepared samples have been tested in the course of several series of tests. It is shown that basalt-boron fibers in concrete improve neutron radiation shielding properties for neutrons with different energies, but it appears to be most effective when it comes to thermal neutrons.


2019 ◽  
Vol 25 (16) ◽  
pp. 2282-2292 ◽  
Author(s):  
Niuniu Liu ◽  
Zeyu Jin ◽  
Hongxing Hua

Two models have previously been commonly used to predict the isolation performance of a hydraulic leveraged dynamic anti-resonance vibration isolator. The models have deficiencies, however, in considering the volumetric stiffness of the isolator. In this paper, a new model is proposed to improve the accuracy by reasonably taking the volumetric stiffness into consideration. The model is validated by a carefully designed experiment. The influence of the volumetric stiffness on the isolation performance of the isolator is investigated by the validated model. The results indicate that the volumetric stiffness of the isolator and its location in a mathematical model have a significant influence on the isolation frequency and the second natural frequency of the isolator. The dependence of the volumetric stiffness on the isolation frequency, the attenuation capacity at the isolation frequency, and the bandgap of the isolator is presented. The investigation will enhance the understanding of the hydraulic leveraged dynamic anti-resonance vibration isolator, and facilitate the design and exploitation of this type of isolator in the field of vibration isolation.


Sign in / Sign up

Export Citation Format

Share Document