Irreducible matrix resolution for symmetry classes of elasticity tensors

2020 ◽  
Vol 25 (10) ◽  
pp. 1873-1895
Author(s):  
Yakov Itin

In linear elasticity, a fourth-order elasticity (stiffness) tensor of 21 independent components completely describes deformation properties elastic constants of a material. The main goal of the current work is to derive a compact matrix representation of the elasticity tensor that correlates with its intrinsic algebraic properties. Such representation can be useful in design of artificial materials. Owing to Voigt, the elasticity tensor is conventionally represented by a (6 × 6) symmetric matrix. In this paper, we construct two alternative matrix representations that conform with the irreducible decomposition of the elasticity tensor. The 3 × 7 matrix representation is in correspondence with the permutation transformations of indices and with the general linear transformation of the basis. An additional representation of the elasticity tensor by two scalars and three 3 × 3 matrices is suitable to describe the irreducible decomposition under the rotation transformations. We present the elasticity tensor of all crystal systems in these compact matrix forms and construct the hierarchy diagrams based on this representation.

Author(s):  
Hung Le Quang ◽  
Qi-Chang He ◽  
Nicolas Auffray

First strain-gradient elasticity is a generalized continuum theory capable of modelling size effects in materials. This extended capability comes from the inclusion in the mechanical energy density of terms related to the strain-gradient. In its linear formulation, the constitutive law is defined by three elasticity tensors whose orders range from four to six. In the present contribution, the symmetry properties of the sixth-order elasticity tensors involved in this model are investigated. If their classification with respect to the orthogonal symmetry group is known, their classification with respect to symmetry planes is still missing. This last classification is important since it is deeply connected with some identification procedures. The classification of sixth-order elasticity tensors in terms of invariance properties with respect to symmetry planes is given in the present contribution. Precisely, it is demonstrated that there exist 11 reflection symmetry classes. This classification is distinct from the one obtained with respect to the orthogonal group, according to which there exist 17 different symmetry classes. These results for the sixth-order elasticity tensor are very different from those obtained for the classical fourth-order elasticity tensor, since in the latter case the two classifications coincide. A few numerical examples are provided to illustrate how some different orthogonal classes merge into one reflection class.


Author(s):  
V. Calisti ◽  
A. Lebée ◽  
A. A. Novotny ◽  
J. Sokolowski

AbstractThe multiscale elasticity model of solids with singular geometrical perturbations of microstructure is considered for the purposes, e.g., of optimum design. The homogenized linear elasticity tensors of first and second orders are considered in the framework of periodic Sobolev spaces. In particular, the sensitivity analysis of second order homogenized elasticity tensor to topological microstructural changes is performed. The derivation of the proposed sensitivities relies on the concept of topological derivative applied within a multiscale constitutive model. The microstructure is topologically perturbed by the nucleation of a small circular inclusion that allows for deriving the sensitivity in its closed form with the help of appropriate adjoint states. The resulting topological derivative is given by a sixth order tensor field over the microstructural domain, which measures how the second order homogenized elasticity tensor changes when a small circular inclusion is introduced at the microscopic level. As a result, the topological derivatives of functionals for multiscale models can be obtained and used in numerical methods of shape and topology optimization of microstructures, including synthesis and optimal design of metamaterials by taking into account the second order mechanical effects. The analysis is performed in two spatial dimensions however the results are valid in three spatial dimensions as well.


2015 ◽  
Vol 9 (1) ◽  
pp. 367-384 ◽  
Author(s):  
A. Diez ◽  
O. Eisen

Abstract. A preferred orientation of the anisotropic ice crystals influences the viscosity of the ice bulk and the dynamic behaviour of glaciers and ice sheets. Knowledge about the distribution of crystal anisotropy is mainly provided by crystal orientation fabric (COF) data from ice cores. However, the developed anisotropic fabric influences not only the flow behaviour of ice but also the propagation of seismic waves. Two effects are important: (i) sudden changes in COF lead to englacial reflections, and (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. A framework is presented here to connect COF data from ice cores with the elasticity tensor to determine seismic velocities and reflection coefficients for cone and girdle fabrics. We connect the microscopic anisotropy of the crystals with the macroscopic anisotropy of the ice mass, observable with seismic methods. Elasticity tensors for different fabrics are calculated and used to investigate the influence of the anisotropic ice fabric on seismic velocities and reflection coefficients, englacially as well as for the ice–bed contact. Hence, it is possible to remotely determine the bulk ice anisotropy.


Author(s):  
R. Desmorat ◽  
N. Auffray ◽  
B. Desmorat ◽  
M. Olive ◽  
B. Kolev

2020 ◽  
Vol 34 (05) ◽  
pp. 9330-9337
Author(s):  
Dong Xu ◽  
Wu-Jun Li

Answer selection is an important subtask of question answering (QA), in which deep models usually achieve better performance than non-deep models. Most deep models adopt question-answer interaction mechanisms, such as attention, to get vector representations for answers. When these interaction based deep models are deployed for online prediction, the representations of all answers need to be recalculated for each question. This procedure is time-consuming for deep models with complex encoders like BERT which usually have better accuracy than simple encoders. One possible solution is to store the matrix representation (encoder output) of each answer in memory to avoid recalculation. But this will bring large memory cost. In this paper, we propose a novel method, called hashing based answer selection (HAS), to tackle this problem. HAS adopts a hashing strategy to learn a binary matrix representation for each answer, which can dramatically reduce the memory cost for storing the matrix representations of answers. Hence, HAS can adopt complex encoders like BERT in the model, but the online prediction of HAS is still fast with a low memory cost. Experimental results on three popular answer selection datasets show that HAS can outperform existing models to achieve state-of-the-art performance.


1995 ◽  
Vol 117 (4) ◽  
pp. 483-493 ◽  
Author(s):  
Graeme W. Milton ◽  
Andrej V. Cherkaev

It is shown that any given positive definite fourth order tensor satisfying the usual symmetries of elasticity tensors can be realized as the effective elasticity tensor of a two-phase composite comprised of a sufficiently compliant isotropic phase and a sufficiently rigid isotropic phase configured in an suitable microstructure. The building blocks for constructing this composite are what we call extremal materials. These are composites of the two phases which are extremely stiff to a set of arbitrary given stresses and, at the same time, are extremely compliant to any orthogonal stress. An appropriately chosen subset of the extremal materials are layered together to form the composite with elasticity tensor matching the given tensor.


2015 ◽  
Vol 08 (03) ◽  
pp. 1550042 ◽  
Author(s):  
Junying Guo ◽  
Xiaojiang Guo ◽  
K. P. Shum

The properties of right ample semigroups have been extensively considered and studied by many authors. In this paper, we concentrate on the matrix representations of right ample semigroups. The (left; right) uniform matrix representation is initially defined. After some properties of left uniform matrix representations of a right ample semigroup are given, we prove that any irreducible left uniform representations of a right ample semigroup can be obtained by using an irreducible left uniform representation of some primitive right ample semigroup. In particular, a construction theorem of prime left uniform representation of right ample semigroups is established.


2010 ◽  
Vol 102 (2) ◽  
pp. 175-190 ◽  
Author(s):  
Çağrı Diner ◽  
Mikhail Kochetov ◽  
Michael A. Slawinski

2021 ◽  
pp. 108128652110108
Author(s):  
Marc Olive ◽  
Boris Kolev ◽  
Rodrigue Desmorat ◽  
Boris Desmorat

We formulate effective necessary and sufficient conditions to identify the symmetry class of an elasticity tensor, a fourth-order tensor which is the cornerstone of the theory of elasticity and a toy model for linear constitutive laws in physics. The novelty is that these conditions are written using polynomial covariants. As a corollary, we deduce that the symmetry classes are affine algebraic sets, a result which seems to be new. Meanwhile, we have been lead to produce a minimal set of 70 generators for the covariant algebra of a fourth-order harmonic tensor and introduce an original generalized cross-product on totally symmetric tensors. Finally, using these tensorial covariants, we produce a new minimal set of 294 generators for the invariant algebra of the elasticity tensor.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 16
Author(s):  
Rogério Serôdio ◽  
Patricia Beites ◽  
José Vitória

A pseudo real matrix representation of an octonion, which is based on two real matrix representations of a quaternion, is considered. We study how some operations defined on the octonions change the set of eigenvalues of the matrix obtained if these operations are performed after or before the matrix representation. The established results could be of particular interest to researchers working on estimation algorithms involving such operations.


Sign in / Sign up

Export Citation Format

Share Document