A pig model of tunneled dialysis catheter (TDC) infection and dysfunction: Opportunities for therapeutic innovation

2021 ◽  
pp. 112972982110467
Author(s):  
Diego Celdran-Bonafonte ◽  
Lihua H Wang ◽  
Aous Jarrouj ◽  
Begona Campos-Naciff ◽  
Jaroslav Janda ◽  
...  

Background: Although tunneled dialysis catheters (TDC) are far from ideal, they still represent the main form of vascular access for most patients beginning dialysis. Catheters are easy to place and allow patients instant access to dialysis, but regardless of these benefits, catheters are associated with a high incidence of significant complications like bloodstream infections, central venous stenosis, thrombosis, and dysfunction. In the present study, we aim to describe and characterize a swine model of catheter dysfunction and bloodstream infection, that recreates the clinical scenario, to help to serve as a platform to develop therapeutic innovations for this important clinical problem. Methods: Six Yorkshire cross pigs were used in this study. Non-coated commercial catheters were implanted in the external jugular recreating the main features of common clinical practice. Catheters were aseptically accessed twice a week for a mock dialysis procedure (flushing in and out) to assess for and identify catheter dysfunction. Animals were monitored daily for infections; once detected, blood samples were collected for bacterial culture and antibiograms. Study animals were euthanized when nonresponsive to treatment. Tissue samples were collected in a standardized fashion for macroscopic inspection and histological analysis. Results: The data analysis revealed an early onset of infection with a median time to infection of 9 days, 40% of the isolates were polymicrobial, and the average time to euthanasia was 20.16 ± 7.3 days. Median time to catheter dysfunction onset was 6 days post-implantation. Postmortem dissection revealed external fibrin sheath and internal thrombosis as the main causes of catheter dysfunction. There was also evidence of central venous stenosis with positive cells for αSMA, CD68, Ki67, Smoothelin, and Vimentin within the venous neointima. Conclusions: The described model represents a reliable and reproducible large animal model of catheter dysfunction and bloodstream infection, which recreates all the main complications of TDC’s and so could be used as a validated large animal model to develop new therapies for TDC related infection, thrombosis/dysfunction and central venous stenosis.

2019 ◽  
Vol 30 (3) ◽  
pp. S44
Author(s):  
N. Li ◽  
K. Farsad ◽  
J. Kaufman ◽  
Y. Jahangiri ◽  
B. Uchida ◽  
...  

2021 ◽  
Author(s):  
Arvin Chireh ◽  
Mikael Sandell ◽  
Rikard Grankvist ◽  
Victoria Lövljung ◽  
Jonathan al-Saadi ◽  
...  

AbstractThe objective of the study was to investigate the safety profile of high-risk micro-endomyocardial biopsy (micro-EMB) compared to conventional EMB in a large animal model. Twenty pigs were subjected to a maximum of 30 consecutive biopsies, including sampling from the free ventricular wall, with either micro-EMB (n = 10) or conventional EMB (n = 10). There were no major complications in the micro-EMB group (0/10), compared to six major complications in the EMB group (6/10; p = 0.003). Survival analysis further highlighted these differences (p = 0.004). There were significantly higher volumes of pericardial effusion in the EMB group (p = 0.01). The study shows a safety advantage of micro-EMB compared to standard EMB in the experimental high-risk circumstances investigated in this animal study. These results indicate enhanced possibilities to collect samples from sensitive areas by using the micro-EMB technique instead of standard EMB.


Analgesia ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 598-602 ◽  
Author(s):  
L.D. Napier ◽  
Z. Mateo ◽  
D.A. Yoshishige ◽  
B.A. Barron ◽  
J.L. Caffrey

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Premila D. Leiphrakpam ◽  
Hannah R. Weber ◽  
Andrea McCain ◽  
Roser Romaguera Matas ◽  
Ernesto Martinez Duarte ◽  
...  

Abstract Background Acute respiratory distress syndrome (ARDS) is multifactorial and can result from sepsis, trauma, or pneumonia, amongst other primary pathologies. It is one of the major causes of death in critically ill patients with a reported mortality rate up to 45%. The present study focuses on the development of a large animal model of smoke inhalation-induced ARDS in an effort to provide the scientific community with a reliable, reproducible large animal model of isolated toxic inhalation injury-induced ARDS. Methods Animals (n = 21) were exposed to smoke under general anesthesia for 1 to 2 h (median smoke exposure = 0.5 to 1 L of oak wood smoke) after the ultrasound-guided placement of carotid, pulmonary, and femoral artery catheters. Peripheral oxygen saturation (SpO2), vital signs, and ventilator parameters were monitored throughout the procedure. Chest x-ray, carotid, femoral and pulmonary artery blood samples were collected before, during, and after smoke exposure. Animals were euthanized and lung tissue collected for analysis 48 h after smoke inhalation. Results Animals developed ARDS 48 h after smoke inhalation as reflected by a decrease in SpO2 by approximately 31%, PaO2/FiO2 ratio by approximately 208 (50%), and development of bilateral, diffuse infiltrates on chest x-ray. Study animals also demonstrated a significant increase in IL-6 level, lung tissue injury score and wet/dry ratio, as well as changes in other arterial blood gas (ABG) parameters. Conclusions This study reports, for the first time, a novel large animal model of isolated smoke inhalation-induced ARDS without confounding variables such as cutaneous burn injury. Use of this unique model may be of benefit in studying the pathophysiology of inhalation injury or for development of novel therapeutics.


Sign in / Sign up

Export Citation Format

Share Document