Prediction of suitable heat treatment for H13 tool steels by application of thermal shock fatigue cycle

Author(s):  
Palani Karthikeyan ◽  
Sumit Pramanik

In industry, thermally shocked components lead to early failures and unexpected breakdowns during production resulting in huge losses in profit. Thus, the present study investigates the as-received, hardened and hardened and nitrogen treated H13 tool steels subjected to a thermal shock gradient similar to the actual industrial applications. The thermal shock gradients were created by using an in-house-built thermal shock fatigue cyclic treatment machine. The effect of thermal shock fatigue cyclic treatments at 1000 and 2000 thermal shock cycles in hot and molten metal chambers was noticed. All the thermal shock fatigue cyclic-treated samples were analysed by hardness, X-ray diffraction, microscopy and magnetic tests. The interesting changes in hardness, distorted crystal structure and crack initiation were found to be different for differently treated H13 tool steel specimens. The molten aluminium was more prone to stick to the surface of as-received as well as hardened and nitrogen treated steel compared to the hardened H13 steel specimens, which would delay the crack initiation. The wear resistance properties of the hardened H13 steel specimens were found to be higher than as-received and hardened and nitrogen treated H13 steel specimens after thermal shock fatigue cyclic treatment. The loss in magnetic properties was significant for the hardened and hardened and nitrogen treated samples compared to as-received H13 tool steel specimens. Therefore, the present 1000 and 2000 thermal fatigue cycles for 30 s at 670 °C would be worthy to predict the proper heat treatment method to design the parameters as well as the life of die-casting components and to help in the economical production of casting.

2011 ◽  
Vol 275 ◽  
pp. 47-50
Author(s):  
Asma Salman ◽  
Brian Gabbitas ◽  
De Liang Zhang

Ti(Al,O)/Al2O3 and TiAl(O)/Al2O3 composite coatings have a potential to reduce dissolution and aluminium soldering tendency of H13 tool steel used in the aluminium processing industry. The thermal shock resistance of H13 tool steel coated with Ti(Al,O)/Al2O3 and TiAl(O)/Al2O3 composite powders sprayed using a high velocity oxygen fuel (HVOF) technique was studied. The thermal shock behaviour of the composite coatings was investigated by subjecting the coated coupons to a number of cycles, each cycle consisting of a holding time of 30 seconds in molten aluminium at 700 ± 10 °C followed by quenching into water. The surfaces of the coupons were examined for Al soldering and an evaluation of surface spallation. Any cracks found in the coatings were studied to explain their thermal shock behaviour. The results of this study showed that both Ti(Al,O)/Al2O3 and TiAl(O)/Al2O3 composite coatings on H13 tool steel have good thermal shock resistance with a thermal shock life between 300 to 400 cycles. The composite coatings and fracture surfaces were analyzed using scanning electron microscopy.


2015 ◽  
Vol 1101 ◽  
pp. 157-163
Author(s):  
Myrna Ariati ◽  
Dwi Marta Nurjaya ◽  
Rizki Aldila

Die soldering occurs when molten aluminum sticks to the surface of a die material and remains there after the ejection of the part. This resulted in low productivity and economic value in the foundry industry. Nitriding surface treatment is considered as an effective way in enhancing the service life of AISI H13 steel dies and to prevent soldering effect. The focus of this paper is to investigate the influence of three different surface conditions in terms of roughness, gas nitriding and pretreatment prior to gas nitriding on the soldering effect. Three kind of samples made of AISI H13 steel were pretreated (quenched and tempered) and followed by : shot peened, gas nitrided and shot peening followed by gas nitriding, were immersed in liquid melted ADC 12 Aluminium alloy at 30 seconds, 30 minutes, 2 hours and 5 hours, at a constant temperature of 680oC in a holding furnace. Characterizations on the surface of the steel were focused on the optical microstructure, microhardness profile, FE SEM observation and enegy dispersive spectrometry mapping. It was found that shot peening prior to nitriding gives a higher surface hardness and depth of nitride layer of H13 tool steel, 1140 HV (>70 HRC) and 120.5 μm, than the nitriding only process, 1033 HV (68 HRC) and 105 μm. The higher the hardness and depth of nitride layer expected would reduce the die soldering effect at the surface of the H13 tool steel dies. It was also found that the only shot peening treatment resulted in a tendency of soldering accompanied by the formation of intermetallic layers ; while soldering is not found on the nitrided and shot peened-nitrided samples.


2018 ◽  
Vol 17 ◽  
pp. 15
Author(s):  
Karel Trojan ◽  
Václav Ocelík ◽  
Nikolaj Ganev ◽  
Stanislav Němeček ◽  
Jaroslav Čech ◽  
...  

The aim of this paper is to describe the effects of annealing on the microstructure of laser cladded AISI H13 tool steel using various methods. Advanced laser technology has the potential to replace conventional methods to make and repair dies. However, it has to be determined whether the newly created surface still needs to be heat-treated, which would cause additional repair costs. No significant effect of heat treatment on the microstructure and real structure of the clads was detected, but further confirmation, in particular by measuring wear resistance, is needed.


2015 ◽  
Vol 4 (2) ◽  
pp. 114-125 ◽  
Author(s):  
Maziar Ramezani ◽  
Timotius Pasang ◽  
Zhan Chen ◽  
Thomas Neitzert ◽  
Dominique Au

Author(s):  
Mohammad Iqbal Yunus ◽  
Kanwarjeet Singh ◽  
Gaurav Arora ◽  
Ranganath M Singari

Heat treatment and surface processing are critical aspects of design and manufacture of components in a wide range of industrial sectors. Engineering materials, such as steel, are heat treated under controlled heating and cooling to alter their chemical, physical and mechanical properties to meet desired engineering applications. Gears engaged rotating at several thousand RPM. Inner Barrels of Injection Moulding machines, which is subjected to wear when thermoplastics, glass fibres are chosen to be injection moulded, Guide pillar Guide bush which slide over each other needs to be hardened from outside to improve hardness and wear resistance, but ductile from inside to bear fluctuating load, for this types of operation Case Hardening is required, to give desired property. In this detailed and systematic investigation, we have selected AISI H13 tool steel as for our research work specimen and we have made an effort to find out the mechanical properties (EDX, Hardness HV, Pin on Disc wear test) and micro structural properties (SEM, XRD) by comparing the two process one is traditional Case hardening heat treatment process i.e. Gas Nitriding and a new process i.e. Coating of Ni-based alloy powder on H13 Tool steel by Microwave Hybrid Heating (MHH) method in household microwave oven at 900W and 2.45 GHz and further find the best process. Investigation shows that coated Sample has good Wear resistance as compared to unmodified H13 Tool Steel sample and nitrided sample, Vicker’s micro-hardness of nitride sample is found to be 829.5HV, and for coated sample is 788HV, Coated sample has good Microstructure as compared to nitrided sample and is free from porous cracks.


2021 ◽  
Vol 4 (1) ◽  
pp. Manuscript
Author(s):  
Thee Chowwanonthapunya ◽  
Chaiyawat Peeratatsuwan ◽  
Manote Rithinyo

Tool steels used in marine industries demand for the effective approach to enhance their properties. Normally, conventional heat treatment is widely used to increase the performance of tool steels. However, this method cannot fully enhance the tool steel performance. On the other hand, cryogenic treatment is a supplementary process to the conventional heat treatment, which can promote the conversion of retained austenite to martensite and accelerate the precipitation of fine carbides. In this paper, a systematic review of cryogenic treatment of tool steels was presented. A wide range of useful investigations was reviewed, particularly in the details of the transformation of retained austenite to martensite and the precipitation of the fine carbides. A case study on a tool steel subjected to conventional heat treatment, conventional cold treatment, and deep cryogenic treatment was also given and discussed to give an insight in the cryogenic treatment of tool steels.


2013 ◽  
Vol 01 (06) ◽  
pp. 20-29 ◽  
Author(s):  
Timotius Pasang ◽  
Zhan Chen ◽  
Maziar Ramezani ◽  
Thomas Neitzert ◽  
Dominique Au

Sign in / Sign up

Export Citation Format

Share Document