Experimental investigation of seismic performance of a novel isostatic frame-cladding system

2022 ◽  
pp. 136943322110572
Author(s):  
Xun Chong ◽  
Pu Huo ◽  
Linlin Xie ◽  
Qing Jiang ◽  
Linbing Hou ◽  
...  

A new connection measure between the precast concrete (PC) cladding panel and PC frame structure is proposed to realize a new kind of isostatic frame-cladding system. Three full-scale PC wall-frame substructures were tested under the quasi-static load. These substructures included a bare wall-frame specimen, a specimen with a cladding panel that has no opening, and a specimen with a cladding panel that has an opening in it. The damage evolution, failure mode, load-bearing capacity, deformation capacity, and energy dissipation capacity of three specimens were compared. The results indicated that the motions of the cladding panels and the main structures were uncoupled through the relative clearance of the bottom connections, and three specimens exhibited approximately identical failure modes and seismic performance. Thus, the reliability of this new isostatic system was validated.

2020 ◽  
Vol 10 (5) ◽  
pp. 1749
Author(s):  
Seung-Ho Choi ◽  
Jin-Ha Hwang ◽  
Sun-Jin Han ◽  
Hyo-Eun Joo ◽  
Hyun-Do Yun ◽  
...  

In recent years, a variety of strengthening methods have been developed to improve the seismic performance of reinforced concrete (RC) frame structures with non-seismic details. In this regard, this study proposes a new type of seismic strengthening method that compresses prefabricated precast concrete (PC) walls from the outside of a building. In order to verify the proposed method, a RC frame structure strengthened with precast walls was fabricated, and cyclic loading tests were performed. The results showed that specimens strengthened using the proposed method exhibited further improvements in strength, stiffness and energy dissipation capacity, compared to RC frame structures with non-seismic details. In addition, a nonlinear analysis method, capable of considering the flexural compression and shear behaviors of the walls, was suggested to analytically evaluate the structural behavior of the frame structures strengthened by the proposed method. Using this, an analysis model for frame structures strengthened with precast walls was proposed. Through the proposed model, the analysis and test results were compared in relation to stiffness, strength, and energy dissipation capacity. Then, the failure mode of the column was evaluated based on the pushover analysis. In addition, this study proposed a simplified analysis model that considered the placement of longitudinal reinforcements in shear walls.


2018 ◽  
Vol 8 (10) ◽  
pp. 1871 ◽  
Author(s):  
Xueyuan Yan ◽  
Suguo Wang ◽  
Canling Huang ◽  
Ai Qi ◽  
Chao Hong

Precast monolithic structures are increasingly applied in construction. Such a structure has a performance somewhere between that of a pure precast structure and that of a cast-in-place structure. A precast concrete frame structure is one of the most common prefabricated structural systems. The post-pouring joint is important for controlling the seismic performance of the entire precast monolithic frame structure. This paper investigated the joints of a precast prestressed concrete frame structure. A reversed cyclic loading test was carried out on two precast prestressed concrete beam–column joints that were fabricated with two different concrete strengths in the keyway area. This testing was also performed on a cast-in-place reinforced concrete joint for comparison. The phenomena such as joint crack development, yielding, and ultimate damage were observed, and the seismic performance of the proposed precast prestressed concrete joint was determined. The results showed that the precast prestressed concrete joint and the cast-in-place joint had a similar failure mode. The stiffness, bearing capacity, ductility, and energy dissipation were comparable. The hysteresis curves were full and showed that the joints had good energy dissipation. The presence of prestressing tendons limited the development of cracks in the precast beams. The concrete strength of the keyway area had little effect on the seismic performance of the precast prestressed concrete joints. The precast prestressed concrete joints had a seismic performance that was comparable to the equivalent monolithic system.


2018 ◽  
Vol 22 (6) ◽  
pp. 1312-1328 ◽  
Author(s):  
Jianyang Xue ◽  
Rui Guo ◽  
Liangjie Qi ◽  
Dan Xu

The majority of existing ancient timber structures have different degrees of damage. The looseness of mortise-tenon joints is a kind of typical damage type. In order to study the influence of looseness on the seismic performance of mortise-tenon joints, six through-tenon joints and six dovetail-tenon joints with scale 1:3.2 were fabricated according to the requirements of the engineering fabrication method of Chinese Qing Dynasty. Each type of joints consisted of one intact joint and five artificial loose joints, and the artificial defect was made to simulate looseness by cutting the tenon sectional dimension. Based on experiments of two types of joints under low-cyclic reversed loading, the seismic behaviors of joints such as failure modes, hysteretic loops and skeleton curves, strength and stiffness degradation, and energy dissipation capacity were studied. Moreover, the comparative analyses of seismic performance between two types of joints were carried out. The variation tendency of seismic behaviors of two types of joints has similarities, and there are some differences due to their different structural styles. The results indicate that squeeze deformation between tenon and mortise of two types of joints occurred. The shape of hysteretic loops of two types of joints is reverse-Z-shape, and the pinching effect of hysteretic loops becomes more obvious with the increase in looseness, among which of through-tenon joints is more obvious than that of dovetail-tenon joints. The carrying capacity, stiffness, and energy dissipation capacity of loose joints are significantly lower than that of the intact one, and the energy dissipation capacity of dovetail-tenon joints is better than that of through-tenon joints. The rotation angles of two types of joints can reach 0.12 rad, and the loose joints still have great deformation capacity.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhen-chao Teng ◽  
Tian-jia Zhao ◽  
Yu Liu

In traditional building construction, the structural columns restrict the design of the buildings and the layout of furniture, so the use of specially shaped columns came into being. The finite element model of a reinforced concrete framework using specially shaped columns was established by using the ABAQUS software. The effects of concrete strength, reinforcement ratio, and axial compression ratio on the seismic performance of the building incorporating such columns were studied. The numerical analysis was performed for a ten-frame structure with specially shaped columns under low reversed cyclic loading. The load-displacement curve, peak load, ductility coefficient, energy dissipation capacity, and stiffness degradation curve of the specially shaped column frame were obtained using the ABAQUS finite element software. The following three results were obtained from the investigation: First, when the strength of concrete in the specially shaped column frame structure was increased, the peak load increased, while the ductility and energy dissipation capacity weakened, which accelerated the stiffness degradation of the structure. Second, when the reinforcement ratio was increased in the specially shaped column frame structure, the peak load increased and the ductility and energy dissipation capacity also increased, which increased the stiffness of the structure. Third, when the axial compression ratio was increased in the structure, the peak load increased, while ductility and energy dissipation capacity reduced, which accelerated the degradation of structural stiffness.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shuainan Zhai ◽  
Zuyin Zou ◽  
Zhanyuan Zhu ◽  
Zixing Zhang ◽  
Wei Liang ◽  
...  

In the past, earthquakes have caused significant damage to traditional masonry filler wall frame structures. To solve this problem, a new design scheme, the partition damping filler wall, is proposed in this paper to reduce the interaction between the filler wall and the frame structure. Low cyclic loading tests are carried out on the traditional and the new masonry filler wall frames. Besides, one full-scale-angled span layer frame without a filler wall is produced for comparison analysis. The mechanical performances of the different frames are studied, including the characteristics of the deformation failure modes, hysteretic curves, skeleton curves, rigidity degeneration, energy dissipation capacity, and the lateral displacement of the frame columns. The research results show that the partition damping filler wall can significantly decrease the diagonal bracing effect of the filler wall on the steel frame. Meanwhile, the setting of the low-strength mortar between the filler wall and steel frame and the arrangement of the damping layer can improve the stress distribution and delay the crack development of the wall. Furthermore, the stiffness degradation rate of the partition damping filler wall is obviously slower than that of the traditional masonry filler wall frame structure. In this paper, the partition damped wall-filled frame structure shows outstanding ductility and deformation capacity.


2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Qiong Yu ◽  
Liang Zhang ◽  
Shaohua Bai ◽  
Baoxiu Fan ◽  
Zhenhai Chen ◽  
...  

Grouted splice connector is widely employed in precast concrete structures, but its utilization is still limited by shortcomings such as high construction cost, inconvenience in assemblage, and uncompacted grout caused by its small sleeve diameter. The grouted sleeve lapping connectors proposed by the authors can not only provide reasonable force transfer and convenient construction processing but also have the characteristics of low price and easy grouting. In this paper, the seismic performance of two full-scale precast concrete columns with two types of grouted sleeve lapping connectors was investigated, where type-I connector connected two lapped rebars and type-II connector connected four lapped rebars by a steel sleeve, respectively. A cast-in-situ column was also tested as a reference. All the specimens were tested under reversed cyclic horizontal load with a constant axial force. The distribution of cracks, failure modes, loading capacities, deformation abilities, stiffness, ductility, hysteresis loops, and energy dissipation of the specimens were studied. The type-I and type-II grouted sleeve lapping connectors satisfactorily transferred the stress of rebars when the columns reached their ultimate loads, and the seismic performance of the precast concrete columns was found to be comparable to that of the cast-in-situ column. Thus, the grouted sleeve lapping connector has a potential to replace the grouted splice connector in cast-in-situ connection.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-6
Author(s):  
Bruno Dal Lago ◽  
Francesco Foti ◽  
Luca Martinelli

The strong earthquakes occurred in Southern Europe in the last decade pointed out a poor seismic performance of the connection system of the cladding of precast industrial structures. The cladding of these buildings usually consists of sandwich concrete panels of remarkable mass, connected to the frame structure with mechanical devices. The estimation of the out-of-plane seismic action on these connections is a key step for their correct proportioning. However, the formulation currently provided in the Eurocode 8 for the estimation of the seismic action on non-structural elements was calibrated with different objectives. Furthermore, given there is no in-plane structure-panel interaction, a quote of the panel mass is lumped in correspondence of their connection for a correct proportioning of the frame structure. The designers need to make assumptions on both aspects that often bring to remarkably different solutions. The paper presents a consistent dynamic formulation of the problem of the vibration of rigid bodies connected with cantilever columns. The solution brings to closed-form equations to evaluate the exact out-of-plane action on the connections and the correct amount of panel mass to be lumped.


Author(s):  
Wei-Bin Ni ◽  
De-Hao Qiao ◽  
Hong-Wei Sun ◽  
Xu Zhang ◽  
Zhong-Wen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document