Bond parameters for peeling and debonding in thin plated RC beams subjected to mixed mode loading – Framework

2022 ◽  
pp. 136943322110651
Author(s):  
Mohammad Arsalan Khan

Studies have primarily focussed on predicting mode-II debonding failure; whereas, in real-case-scenario, flexurally strengthened reinforced concrete (RC) beams observe premature failure mechanisms under mixed-mode loading conditions engaging geometrical and material variations. Peeling is a consequence of flexural crack as debonding is of interfacial shear crack. Under bending, peeling failure is considerably catastrophic over debonding due to the nature of crack formation; therefore, this needs to be distinguished in predictive analysis. In this paper, a new numerical modeling methodology is approached using eXtended finite element method (xFEM) for flexural cracks and Cohesive Zone Model (CZM) for shear cracks without predefining crack locations. The parameters of the constitutive models are identified through comparing finite element results with the experimental data. These parameters are related to key material properties. Based on proposed framework, the models provide a good estimation of plate strain distribution, cracks and failure type, in terms of mode and load of failure. Bilinear bond-slip curve is a closer match over exponential crack evolution at interface.

2017 ◽  
Vol 14 (04) ◽  
pp. 1750035 ◽  
Author(s):  
Mohammad Arsalan Khan ◽  
Jamal El-Rimawi ◽  
Vadim V. Silberschmidt

Realizing the importance of widely used technique of plating for flexural retrofitting of reinforced concrete (RC) beams and its drawbacks due to premature failure(s), present work concentrates in developing a finite element tool model capable of successfully capturing multiple premature failure modes and their corresponding behaviors. The model is simple but focused; the capability and accuracy of the results have been validated through test literature, particularly focusing on the load capacities of beams at progressive stages of failure modes; which is from crack initiation through to complete failure, such as the load of crack initiation, first crack and complete failure. Acceptable accuracy is shown in terms of crack type(s), crack patterns, sequence, location and direction of propagation through the innovative use of cohesive zone model (CZM). The model clearly explains that debonding and peeling, although originating from a same location for most cases, are extensions of different types of cracks.


2021 ◽  
Vol 11 (1) ◽  
pp. 456
Author(s):  
Yanglong Zhong ◽  
Liang Gao ◽  
Xiaopei Cai ◽  
Bolun An ◽  
Zhihan Zhang ◽  
...  

The interface crack of a slab track is a fracture of mixed-mode that experiences a complex loading–unloading–reloading process. A reasonable simulation of the interaction between the layers of slab tracks is the key to studying the interface crack. However, the existing models of interface disease of slab track have problems, such as the stress oscillation of the crack tip and self-repairing, which do not simulate the mixed mode of interface cracks accurately. Aiming at these shortcomings, we propose an improved cohesive zone model combined with an unloading/reloading relationship based on the original Park–Paulino–Roesler (PPR) model in this paper. It is shown that the improved model guaranteed the consistency of the cohesive constitutive model and described the mixed-mode fracture better. This conclusion is based on the assessment of work-of-separation and the simulation of the mixed-mode bending test. Through the test of loading, unloading, and reloading, we observed that the improved unloading/reloading relationship effectively eliminated the issue of self-repairing and preserved all essential features. The proposed model provides a tool for the study of interface cracking mechanism of ballastless tracks and theoretical guidance for the monitoring, maintenance, and repair of layer defects, such as interfacial cracks and slab arches.


Author(s):  
Qiuyi Shen ◽  
Zhenghao Zhu ◽  
Yi Liu

A three-dimensional finite element model for scarf-repaired composite laminate was established on continuum damage model to predict the load capacity under tensile loading. The mixed-mode cohesive zone model was adopted to the debonding behavior analysis of adhesive. Damage condition and failure of laminates and adhesive were subsequently addressed. A three-dimensional bilinear constitutive model was developed for composite materials based on damage mechanics and applied to damage evolution and loading capacity analyses by quantifying damage level through damage state variables. The numerical analyses were implemented with ABAQUS finite element analysis by coding the constitutive model into material subroutine VUMAT. Good agreement between the numerical and experimental results shows the accuracy and adaptability of the model.


2020 ◽  
Vol 57 (6A) ◽  
pp. 61
Author(s):  
Hoa Cong Vu

In this paper, a damage model using cohesive damage zone for the simulation of progressive delamination under variable mode is presented. The constitutive relations, based on liner softening law, are using for formulation of the delamination onset and propagation. The implementation of the cohesive elements is described, along with instructions on how to incorporate the elements into a finite element mesh. The model is implemented in a finite element formulation in ABAQUS. The numerical results given by the model are compare with experimental data


Sign in / Sign up

Export Citation Format

Share Document