scholarly journals On comparison of recycled LDPE and LDPE–bakelite composite based 3D printed patch antenna

Author(s):  
Rupinder Singh ◽  
Sanjeev Kumar ◽  
Amrinder Pal Singh ◽  
Yang Wei

In the past two decades number of studies have been reported on the use of thermoplastics as a substrate for 3D printed patch antennas. However, no work has been reported on the thermoplastic-thermosetting composite-based substrate for 3D printed patch antennas and their mechanical, morphological, rheological, and radiofrequency (RF) characterization for sensing applications. In this study low-density polyethylene (LDPE) and LDPE-5% bakelite (BAK) composite-based patch antenna (resonating frequency 2.45 GHz) were printed (for secondary recycling) on fused deposition modeling (FDM) setup. The RF characteristics were measured using a vector network analyzer (VNA). Ring resonator test was used for measuring the dielectric properties of substrates (which suggests that the dielectric constant ([Formula: see text]) and loss tangent ([Formula: see text]) for LDPE was 2.282 and 0.0045, whereas for LDPE-5%BAK the calculated [Formula: see text] and [Formula: see text] was 2.0663, 0.0051 respectively). This study highlights that for the LDPE-5%BAK composite there was a marginal increase in the size of the patch antenna; but this resulted in improved transmittance, gain, and return loss for typical sensor applications. As regards to printability of substrate, 5% BAK resulted in a melt flow index (MFI) of 9.96 g/10 min in contrast to 12.208 g/10 min for a neat LDPE sample. The selected LDPE-5%BAK composite resulted in peak strength (PS) and break strength (BS) of 16.08 MPa and 14.47 MPa (at 180 °C screw temperature, 110 rpm, and 11 kg load) while processing with a twin-screw extruder (TSE), which was observed better than the neat LDPE (PS 11.98 MPa, BS 10.79 MPa). The results were supported with porosity (%), surface roughness (Ra) analysis based upon scanning electron microscopy (SEM) and bond strength using attenuated total reflection (ATR) based Fourier transformed infrared (FTIR) analysis.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1381
Author(s):  
Maria-Eirini Grigora ◽  
Zoi Terzopoulou ◽  
Konstantinos Tsongas ◽  
Panagiotis Klonos ◽  
Nikolaos Kalafatakis ◽  
...  

Fused deposition modeling (FDM) is currently the most popular 3D printing method, where thermoplastic polymers are predominantly used. Among them, the biobased poly(lactic acid) (PLA) governs the FDM filament market, with demand higher than supply, since not all grades of PLA are suitable for FDM filament production. In this work, the effect of a food grade chain extender (Joncryl ADR® 4400) on the physicochemical properties and printability of PLA marketed for injection molding was examined. All samples were characterized in terms of their mechanical and thermal properties. The microstructure of the filaments and 3D-printed fractured surfaces following tensile testing were examined with optical and scanning electron microscopy, respectively. Molecular weight and complex viscosity increased, while the melt flow index decreased after the incorporation of Joncryl, which resulted in filaments of improved quality and 3D-printed constructs with enhanced mechanical properties. Dielectric spectroscopy revealed that the bulk properties of PLA with respect to molecular mobility, both local and segmental, were, interestingly, not affected by the modifier. Indirectly, this may suggest that the major effects of the extender are on chain length, without inducing chain branching, at least not to a significant extent.


2020 ◽  
pp. 089270572092513 ◽  
Author(s):  
Sudhir Kumar ◽  
Rupinder Singh ◽  
TP Singh ◽  
Ajay Batish

This article reports the comparison for mechanical and morphological properties of 3-D printed tensile specimen with fused deposition modeling by using multiblended and hybrid blended polylactic acid (PLA) matrix. The multiblended PLA matrix was 3-D printed as tensile specimen (as per American Society for Testing and Materials 638 type IV) comprising of 06 layers (01 layer PLA + 01 layer of PLA + polyvinyl chloride + 02 layers of PLA + wood powder + 02 layers of PLA + Fe3O4) each with layer thickness of 0.53 mm. The hybrid blended PLA matrix was also 3-D printed with similar dimensions and printing conditions. The composition/proportion of hybrid blended and multimaterial blended matrix has been selected on the basis of similar melt flow index (MFI) range and the final matrix was compared on basis of equal number of layers (06), similar rheological range (MFI: 40–45 g/10 min) and volume of product (same dimension of prototype). The results of study suggested that the 3-D printed functional prototype of multiblended PLA matrix has better mechanical and morphological properties than hybrid blended PLA matrix. The peak strength and break strength of hybrid blend-based prototype were observed to be 29.56 MPa and 26.60 MPa, respectively, whereas for the multimaterial-based functional prototypes, it was 46.28 MPa and 41.65 MPa, respectively. The results are also supported with scanning electron microscopy-based images, 3-D rendered images, and energy-dispersive X-ray analysis analysis.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2912 ◽  
Author(s):  
Mateusz Galeja ◽  
Klaudiusz Wypiór ◽  
Jan Wachowicz ◽  
Przemysław Kędzierski ◽  
Aleksander Hejna ◽  
...  

Polyoxymethylene (POM) is one of the most popular thermoplastic polymers used in the industry. Therefore, the interest in its potential applications in rapid prototyping is understandable. Nevertheless, its low dimensional stability causes the warping of 3D prints, limiting its applications. This research aimed to evaluate the effects of POM modification with ethylene-vinyl acetate (EVA) (2.5, 5.0, and 7.5 wt.%) on its processing (by melt flow index), structure (by X-ray microcomputed tomography), and properties (by static tensile tests, surface resistance, contact angle measurements, differential scanning calorimetry, and thermogravimetric analysis), as well as very rarely analyzed emissions of volatile organic compounds (VOCs) (by headspace analysis). Performed modifications decreased stiffness and strength of the material, simultaneously enhancing its ductility, which simultaneously increased the toughness even by more than 50% for 7.5 wt.% EVA loading. Such an effect was related to an improved linear flow rate resulting in a lack of defects inside the samples. The decrease of the melting temperature and the slight increase of thermal stability after the addition of EVA broadened the processing window for 3D printing. The 3D printing trials on two different printers showed that the addition of EVA copolymer increased the possibility of a successful print without defects, giving space for further development.


2015 ◽  
Vol 773-774 ◽  
pp. 8-12 ◽  
Author(s):  
Noor Mu'izzah Ahmad Isa ◽  
Nasuha Sa'ude ◽  
M. Ibrahim ◽  
Saiful Manar Hamid ◽  
Khairu Kamarudin

This paper presents of Polymer Matrix Composite (PMC) as feedstock used in Fused Deposition Modelling (FDM) machine. This study discussed on the development of a new PMC material by the injection molding machine. The material consist of copper powder filled in an acrylonitrile butadiene styrene (ABS), binder and surfactant material. The effect of metal filled in ABS and binder content was investigated experimentally by the Melt Flow Index (MFI) machine. Based on the result obtained, an increment of copper filled in ABS by volume percentage (vol. %) effected on melt flow index results. With highly filled copper in PMC composites increase the melt flow index results. It was concluded that, the propensity of the melt flow allow an internal force in PMC material through the injection molding and FDM machine.


2021 ◽  
Vol 11 (19) ◽  
pp. 8798
Author(s):  
Thai-Hung Le ◽  
Van-Son Le ◽  
Quoc-Khanh Dang ◽  
Minh-Thuyet Nguyen ◽  
Trung-Kien Le ◽  
...  

This paper reports the synthesis of a new printable ABS–MWCNT composite filament, for use in fused deposition modeling (FDM), using an extrusion technique. Acrylonitrile butadiene styrene (ABS) and multi-walled carbon nanotubes (MWCNTs) were the initial materials used for fabricating the filaments. The MWCNTs were dispersed in ABS resin, then extruded through a single-shaft extruder in filament form, with MWCNT contents of 0.5%, 1%, 1.5%, 2%, 3% or 4% by weight. After extrusion, the diameter of the filaments was about 1.75 mm, making them appropriate for FDM. The as-synthesized filaments were then used in FDM to print out samples, on which tensile tests and other analyses were carried out. The results demonstrate that the sample with 2% MWCNTs had the highest strength value, 44.57 MPa, comprising a 42% increase over that of the pure ABS sample. The morphology and dispersion of MWCNTs in the composite were observed by field emission scanning electron microscopy (FESEM), demonstrating the uniform distribution of MWCNTs in the ABS matrix. The thermal behavior results indicated no significant change in the ABS structure; however, the melt flow index of the filaments decreased with an increase in the MWCNT content.


2015 ◽  
Vol 773-774 ◽  
pp. 3-7 ◽  
Author(s):  
Nasuha Sa'ude ◽  
Khairu Kamarudin ◽  
Mustaffa Ibrahim ◽  
Mohd Halim Irwan Ibrahim

This paper presents the melt flow index (MFI) of acrylonitrile butadiene styrene (ABS) and recycle ABS filament wire for Fused Deposition Modeling (FDM) machine. In this study, the effect of MFI on recycle ABS material was investigated experimentally based on the melting temperature, density, screw speed and material properties. The MFI result on ABS recycle in wire filament was investigated using Melt Indexer Machine (MIM). Based on the result obtained, it was found that, ABS recycle was increase the density and MFI results. It can be observed that, the higher temperature was melt the recycle ABS material through the MIM and extruder machine.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kapil Chawla ◽  
Rupinder Singh ◽  
Jaspreet Singh

Purpose The thermoplastic polymers do not decompose easily due to the presence of long-chain stable polymeric structure, and thus, causes serious effects on the environment. Recycling of these polymer wastes becomes the only solution to minimize their adverse effects on the environment. The purpose of this study was to explore the feasibility of using recycled thermoplastic material as filament for fused deposition modeling technique. Design/methodology/approach In this study, the researchers fabricated fused filaments (in-house) for fused deposition modeling (FDM) technique of additive manufacturing from secondary recycled acrylonitrile butadiene styrene (ABS) by using a twin-screw extruder. After measuring the melt flow index of the secondary recycled ABS, the twin-screw extrusion parameters (rpm/speed of the screw, extrusion temperature and load) were varied to predict their influence on the various properties (rheological/mechanical/thermal) of the fabricated filaments. Experimental work was executed as per Taguchi’s L9 orthogonal array. Findings Thermal analysis performed to estimate the heat carrying capacity of recycled ABS highlighted that the heat capacity of ABS increases significantly from 0.28 J/g to 3.94 J/g during the heating cycle. The maximum value of peak strength and percentage break elongation for the fused filaments was investigated at 12.5 kg load, 2,250 C extrusion temperature and 70 rpm speed. Originality/value The filaments fabricated by recycling the polymeric waste has been successfully used in the FDM machine for the preparation of the three-dimensional printed tensile specimen.


2021 ◽  
Vol 23 (12) ◽  
pp. 146-157
Author(s):  
Afroza Bano ◽  
◽  
Manish Kumar Gupta ◽  

Friction-based welding is one of the most cost-effective and dependable methods for joining thermoplastics. However, there has been minimal work that has demonstrated the procedure/methods/equipment for welding two distinct types of thermoplastics. There is, nevertheless, a significant possibility of connecting the various thermoplastic materials by matching their melt flow index (MFI). One way for modifying the MFI is to reinforce it with micro/nano sized fillers. Fused deposition modelling (FDM) is a fast prototyping technology that employs thermoplastic-based filament to print components. The current study focuses on connecting aluminium (Al) metal powder reinforced acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) thermoplastic substrates (3D printed by FDM) utilising friction welding (FW) / friction stir welding (FSW) / friction stir spot welding (FSSW). It was observed that the PA6 with 50% Al fillers (PA6-50% Al) and ABS matrix with 15% Al fillers (ABS-15% Al) produced MFIs of 11.97g/10min and 11.57g/10min, respectively.


Sign in / Sign up

Export Citation Format

Share Document