Control-oriented modeling, validation, and interaction analysis of turbocharged lean-burn natural gas variable speed engine

2021 ◽  
pp. 146808742110642
Author(s):  
Sree Harsha Rayasam ◽  
Weijin Qiu ◽  
Ted Rimstidt ◽  
Gregory M Shaver ◽  
Daniel G Van Alstine ◽  
...  

Accurate modeling and control of the gas exchange process in a modern turbocharged spark-ignited engine is critical for the control and analysis of different control strategies. This paper develops a simple physics-based, five-state engine model for a large four-stroke spark-ignited turbocharged engine fueled by natural gas that is used in variable speed applications. The control-oriented model is amenable for control algorithm development and includes the impacts of modulation to any combination of four actuators: throttle valve, bypass valve, fuel rate, and wastegate valve. The control problem requires tracking engine speed to provide propulsive power, differential pressure across the throttle valve to prevent compressor surge, air-to-fuel ratio to restrict engine emissions. Two validation strategies, open-loop and closed-loop, are used to validate the accuracy of both nonlinear and linear versions of the control-oriented model. The control models are able to capture the engine dynamics within 5%–10% error at most of the engine operating points. Finally, the relative gain array (RGA) is applied to the linearized engine model to understand the degree of interactions between plant inputs and outputs as a function of frequency for various operating points. Results of the RGA analysis show that the preferred input-output pairing changes depending on the linear plant model as well as frequency. Therefore, a coordinated controller is ideal to tackle the control problem in question.

1998 ◽  
Vol 123 (3) ◽  
pp. 425-430 ◽  
Author(s):  
Anupam Gangopadhyay ◽  
Peter Meckl

In this paper, a control-oriented model of a medium-duty throttle-body natural gas engine is developed. The natural gas engine uses lean-burn technology without exhaust gas recirculation (EGR). The dynamic engine model differs from models of gasoline engines by including the natural gas fuel dynamics in the intake manifold. The model is based on a mean value concept and has three state variables: intake manifold pressure, fuel fraction in the intake manifold and the engine rotational speed. The resulting model has been validated in steady-state and transient operation over the usual operating range of the engine between 800 rpm and 2600 rpm with air/fuel ratios ranging between 18.0 and 24.0.


Author(s):  
S.X. Shen ◽  
V.G. Gourishankar ◽  
Q. Xia ◽  
M. Rao

2021 ◽  
pp. 146808742110050
Author(s):  
Enrica Malfi ◽  
Vincenzo De Bellis ◽  
Fabio Bozza ◽  
Alberto Cafari ◽  
Gennaro Caputo ◽  
...  

The adoption of lean-burn concepts for internal combustion engines working with a homogenous air/fuel charge is under development as a path to simultaneously improve thermal efficiency, fuel consumption, nitric oxides, and carbon monoxide emissions. This technology may lead to a relevant emission of unburned hydrocarbons (uHC) compared to a stoichiometric engine. The uHC sources are various and the relative importance varies according to fuel characteristics, engine operating point, and some geometrical details of the combustion chamber. This concern becomes even more relevant in the case of engines supplied with natural gas since the methane has a global warming potential much greater than the other major pollutant emissions. In this work, a simulation model describing the main mechanisms for uHC formation is proposed. The model describes uHC production from crevices and flame wall quenching, also considering the post-oxidation. The uHC model is implemented in commercial software (GT-Power) under the form of “user routine”. It is validated with reference to two large bore engines, whose bores are 31 and 46 cm (engines named accordingly W31 and W46). Both engines are fueled with natural gas and operated with lean mixtures (λ > 2), but with different ignition modalities (pre-chamber device or dual fuel mode). The engines under study are preliminarily schematized in the 1D simulation tool. The consistency of 1D engine schematizations is verified against the experimental data of BMEP, air flow rate, and turbocharger rotational speed over a load sweep. Then, the uHC model is validated against the engine-out measurements. The averaged uHC predictions highlight an average error of 7% and 10 % for W31 and W46 engines, respectively. The uHC model reliability is evidenced by the lack of need for a case-dependent adjustment of its tuning constants, also in presence of relevant variations of both engine load and ring pack design.


2018 ◽  
Vol 8 (7) ◽  
pp. 1201 ◽  
Author(s):  
Haigang Ding ◽  
Jiyun Zhao ◽  
Gang Cheng ◽  
Steve Wright ◽  
Yufeng Yao

A new leaking valve-pump parallel control (LVPC) oil hydraulic system is proposed to improve the performance of dynamic response of present variable speed pump control (VSPC) system, which is an oil hydraulic control system with saving energy. In the LVPC, a control valve is operating at leaking status, together with a variable speed pump, to regulate the system flow of hydraulic oil simultaneously. Therefore, the degree of valve control and pump control can be adjusted by regulating the valve-pump weight ratio. The LVPC system design, mathematical model development, system parameter and control performance analysis are carried out systematically followed by an experimental for validation process. Results have shown that after introducing the valve control, the total leakage coefficient increases significantly over a wide range with the operating point and this further increases damping ratios and reduces the velocity stiffness. As the valve-pump weight ratio determines the flow distribution between the valve and the pump and the weight factors of the valve and/or the pump controls determines the response speed of the LVPC system, thus if the weight factors are constrained properly, the LVPC system will eventually have a large synthetic open-loop gain and it will respond faster than the VSPC system. The LVPC will enrich the control schemes of oil hydraulic system and has potential value in application requiring of fast response.


Author(s):  
Carmine M. Pappalardo ◽  
Domenico Guida

In this paper, a new computational algorithm for the numerical solution of the adjoint equations for the nonlinear optimal control problem is introduced. To this end, the main features of the optimal control theory are briefly reviewed and effectively employed to derive the adjoint equations for the active control of a mechanical system forced by external excitations. A general nonlinear formulation of the cost functional is assumed, and a feedforward (open-loop) control scheme is considered in the analytical structure of the control architecture. By doing so, the adjoint equations resulting from the optimal control theory enter into the formulation of a nonlinear differential-algebraic two-point boundary value problem, which mathematically describes the solution of the motion control problem under consideration. For the numerical solution of the problem at hand, an adjoint-based control optimization computational procedure is developed in this work to effectively and efficiently compute a nonlinear optimal control policy. A numerical example is provided in the paper to show the principal analytical aspects of the adjoint method. In particular, the feasibility and the effectiveness of the proposed adjoint-based numerical procedure are demonstrated for the reduction of the mechanical vibrations of a nonlinear two degrees-of-freedom dynamical system.


Sign in / Sign up

Export Citation Format

Share Document