Outlier analysis of sloshing impact loads on liquid ship cargo

Author(s):  
Sang-Yeob Kim ◽  
Yonghwan Kim ◽  
Yang-Jun Ahn

This paper introduces an outlier analysis which can improve the convergence of the statistical analysis results of sloshing model test data. The paper classify possible outliers in the sloshing model test into three categories and present a treatment method for each outlier. The developed outlier analysis is adapted to the model test results for the cargo of the liquefied-natural-gas (LNG) carrier in operation. The results of the present new method are compared with those of the conventional procedure, particularly focusing on long-term sloshing prediction. Through this study, the effectiveness of the present method is observed, and it is found that the present method provides is robust and reliable results in the application of experimental data for load prediction.

Author(s):  
Thomas B. Johannessen ◽  
Øystein Lande ◽  
Øistein Hagen

For offshore structures in harsh environments, horizontal wave impact loads should be taken into account in design. Shafts on GBS structures, and columns on semisubmersibles and TLPs are exposed to impact loads. Furthermore, if the crest height exceeds the available freeboard, the deck may also be exposed to wave impact loads. Horizontal loads due to waves impacting on the structure are difficult to quantify. The loads are highly intermittent, difficult to reproduce in model tests, have a very short duration and can be very large. It is difficult to calculate these loads accurately and the statistical challenges associated with estimating a value with a prescribed annual probability of occurrence are formidable. Although the accurate calculation of crest elevation in front of the structure is a significant challenge, industry has considerable experience in handling this problem and the analysis results are usually in good agreement with model test results. The present paper presents a statistical model for the distribution of horizontal slamming pressures conditional on the incident crest height upwave of the structure. The impact load distribution is found empirically from a large database of model test results where the wave impact load was measured simultaneously at a large number of panels together with the incident crest elevation. The model test was carried out on a circular surface piercing column using long simulations of longcrested, irregular waves with a variety of seastate parameters. By analyzing the physics of the process and using the measured crest elevation and the seastate parameters, the impact load distribution model is made seastate independent. The impact model separates the wave impact problem in three parts: – Given an incident crest in a specified seastate, calculate the probability of the crest giving a wave impact load above a threshold. – Given a wave impact event above a threshold, calculate the distribution of the resulting peak load. – Given a peak load, calculate the distribution of slamming pressures at one spatial location. The development of the statistical model is described and it is shown that the model is appropriate for fixed and floating structures and for wave impact with both columns and the deck box.


Author(s):  
E Y. Wang ◽  
J. T. Cherian ◽  
A. Madsen ◽  
R. M. Fisher

Many steel parts are electro-plated with chromium to protect them against corrosion and to improve their wear-resistance. Good adhesion of the chrome plate to the steel surface, which is essential for long term durability of the part, is extremely dependent on surface preparation prior to plating. Recently, McDonnell Douglas developed a new pre-treatment method for chrome plating in which the steel is anodically etched in a sulfuric acid and hydrofluoric acid solution. On carbon steel surfaces, this anodic pre-treatment produces a dark, loosely adhering material that is commonly called the “smut” layer. On stainless steels and nickel alloys, the surface is only darkened by the anodic pre-treatment and little residue is produced. Anodic pre-treatment prior to hard chrome plating results in much better adherence to both carbon and alloy steels.We have characterized the anodic pre-treated steel surface and the resulting “smut” layer using various techniques including electron spectroscopy for chemical analysis (ESCA) on bulk samples and transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) on stripped films.


2014 ◽  
Vol 24 (2) ◽  
pp. 48-58 ◽  
Author(s):  
Lakshmi Kollara ◽  
Graham Schenck ◽  
Jamie Perry

Studies have investigated the applications of Continuous Positive Airway Pressure (CPAP) therapy in the treatment of hypernasality due to velopharyngeal dysfunction (VPD; Cahill et al., 2004; Kuehn, 1991; Kuehn, Moon, & Folkins, 1993; Kuehn et al., 2002). The purpose of this study was to examine the effectiveness of CPAP therapy to reduce hypernasality in a female subject, post-traumatic brain injury (TBI) and pharyngeal flap, who presented with signs of VPD including persistent hypernasality. Improvements in mean velopharyngeal orifice size, subjective perception of hypernasality, and overall intelligibility were observed from the baseline to 8-week post-treatment assessment intervals. Additional long-term assessments completed at 2, 3, and 4 months post-treatment indicated decreases in immediate post-treatment improvements. Results from the present study suggest that CPAP is a safe, non-invasive, and relatively conservative treatment method for reduction of hypernasality in selected patients with TBI. More stringent long-term follow up may indicate the need for repeated CPAP treatment to maintain results.


2004 ◽  
Author(s):  
K. S. W. H. Hendriks ◽  
F. J. M. Grosfeld ◽  
A. A. M. Wilde ◽  
J. van den Bout ◽  
I. M. van Langen ◽  
...  

2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Iskendar Iskendar ◽  
Andi Jamaludin ◽  
Paulus Indiyono

This paper describes hydrodynamic model tests of Wing in Surface Effect (WiSE) Craft. These craft  was fitted with  stephull  form in different location on longitudinal flat bottom (stepedhull planning craft) to determine the influences of sticking and porpoising motion performances. These motions are usually occured when the craft start to take-off from water surfaces. The test models with scale of 1 : 7 were comprised of 4 (four) stephull models and 1 (one) non-stephull model  as a comparative study. The hydrodynamic  tests were performed with craft speed of 16 – 32 knots (prototype values) in Towing Tank at UPT. Balai Pengkajian dan Penelitian Hidrodinamika (BPPH), BPPT, Surabaya. The resistance (drag) was measured by dynamo meter and the trim of model (draft changing at fore and aft  of model due to model speed) was measured by trim meter. By knowing the value of model trim, the wetted surface area can be determined. Then, the lift forces were calculated based on these measured values. The model test results were presented on tables and curves.  Test results show that models  with step located far away from center of gravity of the WiSE craft tend to porpoising and sticking condition, except if the step location on the below of these center of gravity. While model without step tends to sticking conditions.


2019 ◽  
Vol Volume 2 Nomor 2 ◽  

There is a tendency in the education field today to return to the idea that children will learn better if the environment is created naturally. Learning will be more meaningful if children "experience" themselves what they are learning, not 'knowing' it. Target-oriented learning of material mastery proves to be successful in short-term 'remembering' competitions, but fails to equip children to solve problems in long-term life. The problems that would to be studied in this study are: (a) how is the improvement of Social Science learning outcomes by applying the Make A-Match Model to it? (b) how does the Make A-Match Model apply towards the learning motivation? The objectives of this study are: (a) want to know the improvement in Social Science learning achievement after the implemetation of the Make A-Match Model. (b) want to know the effect of Make A-Match Model towards students’ motivation of the subject after it is applied. This research is used two rounds of action research. In each round consists of four stages, namely: design, activity and observation, reflection and revision. The target of this research is the fourth grade students of Mongodow. The data obtained in the form of formative test results, observation sheets of teaching and learning activities. From the results of analysts obtained student achievement has increased from cycle I to cycle II namely, cycle I (65%), cycle II (83%). The conclusion of this research is the Make A-Match Model of Social Science learning could positively influence the motivation of learning of central students, and this learning model could be used as an alternative to Social Science learning.


1990 ◽  
Author(s):  
David M. Bailey ◽  
Stuart D. Foltz ◽  
Myer J. Rosenfield
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2476
Author(s):  
Haiwen Li ◽  
Sathwik S. Kasyap ◽  
Kostas Senetakis

The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.


Sign in / Sign up

Export Citation Format

Share Document