An FBG-based smart wearable ring fabricated using FDM for monitoring body joint motion

2019 ◽  
pp. 152808371987020 ◽  
Author(s):  
Hong Cheng-Yu ◽  
Zamir Ahmed Abro ◽  
Zhang Yi-Fan ◽  
Rafique Ahmed Lakho

This study proposed a new fiber Bragg grating-based smart ring for monitoring body joint postures occurred at elbow joint and knee joint positions. A single-mode fiber Bragg grating sensor was embedded into a 3D printed ring for sensing occurred deformation of the ring. The raw material used for fabricating the smart ring was polylactic acid, which was found to have the advantages of being flexible in nature and having ease of fabrication using fused deposition modeling method. The fabrication process of the fiber Bragg grating smart ring was characterized by the advantages of ease of handling, quick prototyping, high resolution, low cost, and time-saving. Bare fiber Bragg grating sensors were successfully embedded into hot printed polylactic acid material during the fused deposition modeling process, even the printing temperature of the printing nozzle exceeded 200℃. Two new smart wearable rings were fabricated and used to monitor systematic bend motion of elbow joint and knee joint. The measurement sensitivities of the two smart rings mounted at the elbow joint and knee joint were 0.0056 nm/° and 0.0276 nm/°, respectively. The corresponding maximum measurement angle within current calibration tests were 90° and 100°, respectively. The method of using both fiber Bragg grating and fused deposition modeling for sensor design can be extended for the fabrication of other sensors such as temperature sensors, strain sensors, pressure sensors, stress sensors, displacement sensors, and tilt sensors.

2021 ◽  
Vol 13 (4) ◽  
pp. 1875
Author(s):  
Emmanuel Ugo Enemuoh ◽  
Venkata Gireesh Menta ◽  
Abdulaziz Abutunis ◽  
Sean O’Brien ◽  
Labiba Imtiaz Kaya ◽  
...  

There is limited knowledge about energy and carbon emission performance comparison between additive fused deposition modeling (FDM) and consolidation plastic injection molding (PIM) forming techniques, despite their recent high industrial applications such as tools and fixtures. In this study, developed empirical models focus on the production phase of the polylactic acid (PLA) thermoplastic polyester life cycle while using FDM and PIM processes to produce American Society for Testing and Materials (ASTM) D638 Type IV dog bone samples to compare their energy consumption and eco-impact. It was established that energy consumption by the FDM layer creation phase dominated the filament extrusion and PLA pellet production phases, with, overwhelmingly, 99% of the total energy consumption in the three production phases combined. During FDM PLA production, about 95.5% of energy consumption was seen during actual FDM part building. This means that the FDM process parameters such as infill percentage, layer thickness, and printing speed can be optimized to significantly improve the energy consumption of the FDM process. Furthermore, plastic injection molding consumed about 38.2% less energy and produced less carbon emissions per one kilogram of PLA formed parts compared to the FDM process. The developed functional unit measurement models can be employed in setting sustainable manufacturing goals for PLA production.


Sign in / Sign up

Export Citation Format

Share Document