Extracellular matrix remodeling is associated with the survival of cardiomyocytes in the subendocardial region of the ischemic myocardium

2021 ◽  
pp. 153537022110420
Author(s):  
Qing Chu ◽  
Ying Xiao ◽  
Xin Song ◽  
Y James Kang

A significant amount of cardiomyocytes in subendocardial region survive from ischemic insults. In order to understand the mechanism by which these cardiomyocytes survive, the present study was undertaken to examine changes in these surviving cardiomyocytes and their extracellular matrix. Male C57BL/6 mice aged 8–12 weeks old were subjected to a permanent left anterior descending coronary artery ligation to induce ischemic injury. The hearts were collected at 1, 4, 7, or 28 days after the surgery and examined by histology. At day 1 after left anterior descending ligation, there was a significant loss of cardiomyocytes through apoptosis, but a proportion of cardiomyocytes were surviving in the subendocardial region. The surviving cardiomyocytes were gradually changed from rod-shaped to round-shaped, and appeared disconnected. Connexin 43, an important gap junction protein, was significantly decreased, and collagen I and III deposition was significantly increased in the extracellular matrix. Furthermore, lysyl oxidase, a copper-dependent amine oxidase catalyzing the cross-linking of collagens, was significantly increased in the extracellular matrix, paralleled with the surviving cardiomyocytes. Inhibition of lysyl oxidase activity reduced the number of surviving cardiomyocytes. Thus, the extracellular matrix remodeling is correlated with the deformation of cardiomyocytes, and the electrical disconnection between the surviving cardiomyocytes due to connexin 43 depletion and the increase in lysyl oxidase would help these deformed cardiomyocytes survive under ischemic conditions.

2021 ◽  
Vol 320 (5) ◽  
pp. H1786-H1801
Author(s):  
Brittany O. Aicher ◽  
Jackie Zhang ◽  
Selen C. Muratoglu ◽  
Rebeca Galisteo ◽  
Allison L. Arai ◽  
...  

Moderate aerobic exercise was shown to significantly reduce mortality, extracellular matrix degradation, and thoracic aortic aneurysm and dissection formation associated with lysyl oxidase inhibition in a mouse model. Gene expression suggested a reversal of TGF-β, inflammation, and extracellular matrix remodeling pathway dysregulation, along with augmented elastogenesis with exercise.


FEBS Letters ◽  
2017 ◽  
Vol 591 (10) ◽  
pp. 1394-1407 ◽  
Author(s):  
Shu-Yun Li ◽  
Jia-qi Yan ◽  
Zhuo Song ◽  
Yue-Fang Liu ◽  
Min-Jie Song ◽  
...  

2010 ◽  
Vol 88 (3) ◽  
pp. 491-503 ◽  
Author(s):  
Thiagarajan Hemalatha ◽  
Chidambaram Balachandran ◽  
Bhakthavatsalam Murali Manohar ◽  
Mohammed Nayeem ◽  
Samu Subramaniam ◽  
...  

Platelet-derived endothelial cell growth factor (PDECGF) is a potent angiogenic peptide with anti-apoptotic activity expressed widely in tumours. However, its expression in myocardial infarction (MI) is not yet established. This study aimed to assess the myocardial expression of PDECGF in rats after MI. Extracellular matrix (ECM) remodeling plays an important role in angiogenesis; hence, changes in the ECM components were investigated in the myocardium after MI, which was induced in rats by coronary artery ligation (CAL) and verified using biochemical markers and histopathology. Immunohistochemistry, RT-PCR, and activity assays identified the expression pattern of PDECGF on days 1, 2, 4, 8, 16, and 32 after CAL. The levels of TNF-α, MMP-2, collagen, and glycosaminoglycans in the ECM were assessed. Studies on immunohistochemistry, RT-PCR, and PDECGF activity demonstrated elevated levels of PDECGF expression from day 2 after CAL. Macrophages, endothelial cells, fibroblasts, and cardiomyocytes, especially at the border region of the lesion, showed an enhanced expression for PDECGF. Remodeling of the ECM was depicted by changes in the levels of TNF-α, MMP-2, collagen, and GAG. Hence, this study clearly indicated PDECGF as an important angiogenic molecule expressed during MI and the alterations in ECM components facilitated the process of angiogenesis.


2015 ◽  
Vol 79 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Bruno Cogliati ◽  
Mathieu Vinken ◽  
Tereza C. Silva ◽  
Cintia M.M. Araújo ◽  
Thiago P.A. Aloia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document