Preclinical Evidence for the Mechanisms of Transcranial Direct Current Stimulation in the Treatment of Psychiatric Disorders; A Systematic Review

2021 ◽  
pp. 155005942110661
Author(s):  
Yuji Yamada ◽  
Tomiki Sumiyoshi

Backgrounds. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique for the treatment of several psychiatric disorders, eg, mood disorders and schizophrenia. Although tDCS provides a promising approach, its neurobiological mechanisms remain to be explored. Objectives. To provide a systematic review of animal studies, and consider how tDCS ameliorates psychiatric conditions. Methods. A literature search was conducted on English articles identified by PubMed. We defined the inclusion criteria as follows: (1) articles published from the original data; (2) experimental studies in animals; (3) studies delivering direct current transcranially, ie, positioning electrodes onto the skull. Results. 138 papers met the inclusion criteria. 62 papers deal with model animals without any dysfunctions, followed by 52 papers for neurological disorder models, and 12 for psychiatric disorder models. The most studied category of functional areas is neurocognition, followed by motor functions and pain. These studies overall suggest the role for the late long-term potentiation (LTP) via anodal stimulation in the therapeutic effects of tDCS. Conclusions. tDCS Anodal stimulation may provide a novel therapeutic strategy to particularly enhance neurocognition in psychiatric disorders. Its mechanisms are likely to involve facilitation of the late LTP.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yuji Yamada ◽  
Tomiki Sumiyoshi

Backgrounds: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique for the treatment of several psychiatric disorders, e.g., mood disorders and schizophrenia. Therapeutic effects of tDCS are suggested to be produced by bi-directional changes in cortical activities, i.e., increased/decreased cortical excitability via anodal/cathodal stimulation. Although tDCS provides a promising approach for the treatment of psychiatric disorders, its neurobiological mechanisms remain to be explored.Objectives: To review recent findings from neurophysiological, chemical, and brain-network studies, and consider how tDCS ameliorates psychiatric conditions.Findings: Enhancement of excitatory synaptic transmissions through anodal tDCS stimulation is likely to facilitate glutamate transmission and suppress gamma-aminobutyric acid transmission in the cortex. On the other hand, it positively or negatively modulates the activities of dopamine, serotonin, and acetylcholine transmissions in the central nervous system. These neural events by tDCS may change the balance between excitatory and inhibitory inputs. Specifically, multi-session tDCS is thought to promote/regulate information processing efficiency in the cerebral cortical circuit, which induces long-term potentiation (LTP) by synthesizing various proteins.Conclusions: This review will help understand putative mechanisms underlying the clinical benefits of tDCS from the perspective of neurotransmitters, network dynamics, intracellular events, and related modalities of the brain function.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fateme Pol ◽  
Mohammad Ali Salehinejad ◽  
Hamzeh Baharlouei ◽  
Michael A. Nitsche

Abstract Background Gait problems are an important symptom in Parkinson’s disease (PD), a progressive neurodegenerative disease. Transcranial direct current stimulation (tDCS) is a neuromodulatory intervention that can modulate cortical excitability of the gait-related regions. Despite an increasing number of gait-related tDCS studies in PD, the efficacy of this technique for improving gait has not been systematically investigated yet. Here, we aimed to systematically explore the effects of tDCS on gait in PD, based on available experimental studies. Methods Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach, PubMed, Web of Science, Scopus, and PEDro databases were searched for randomized clinical trials assessing the effect of tDCS on gait in patients with PD. Results Eighteen studies were included in this systematic review. Overall, tDCS targeting the motor cortex and supplementary motor area bilaterally seems to be promising for gait rehabilitation in PD. Studies of tDCS targeting the dorosolateral prefrontal cortex or cerebellum showed more heterogeneous results. More studies are needed to systematically compare the efficacy of different tDCS protocols, including protocols applying tDCS alone and/or in combination with conventional gait rehabilitation treatment in PD. Conclusions tDCS is a promising intervention approach to improving gait in PD. Anodal tDCS over the motor areas has shown a positive effect on gait, but stimulation of other areas is less promising. However, the heterogeneities of methods and results have made it difficult to draw firm conclusions. Therefore, systematic explorations of tDCS protocols are required to optimize the efficacy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lukas Frase ◽  
Lydia Mertens ◽  
Arno Krahl ◽  
Kriti Bhatia ◽  
Bernd Feige ◽  
...  

AbstractTranscranial direct current stimulation (tDCS) is increasingly used as a form of noninvasive brain stimulation to treat psychiatric disorders; however, its mechanism of action remains unclear. Prolonged visual stimulation (PVS) can enhance evoked EEG potentials (visually evoked potentials, VEPs) and has been proposed as a tool to examine long-term potentiation (LTP) in humans. The objective of the current study was to induce and analyze VEP plasticity and examine whether tDCS could either modulate or mimic plasticity changes induced by PVS. Thirty-eight healthy participants received tDCS, PVS, either treatment combined or neither treatment, with stimulation sessions being separated by one week. One session consisted of a baseline VEP measurement, one stimulation block, and six test VEP measurements. For PVS, a checkerboard reversal pattern was presented, and for tDCS, a constant current of 1 mA was applied via each bioccipital anodal target electrode for 10 min (Fig. S1). Both stimulation types decreased amplitudes of C1 compared to no stimulation (F = 10.1; p = 0.002) and led to a significantly smaller increase (PVS) or even decrease (tDCS) in N1 compared to no stimulation (F = 4.7; p = 0.034). While all stimulation types increased P1 amplitudes, the linear mixed effects model did not detect a significant difference between active stimulation and no stimulation. Combined stimulation induced sustained plastic modulation of C1 and N1 but with a smaller effect size than what would be expected for an additive effect. The results demonstrate that tDCS can directly induce LTP-like plasticity in the human cortex and suggest a mechanism of action of tDCS relying on the restoration of dysregulated synaptic plasticity in psychiatric disorders such as depression and schizophrenia.


2021 ◽  
Vol 10 (13) ◽  
pp. 2981
Author(s):  
Andrés Pino-Esteban ◽  
Álvaro Megía-García ◽  
David Martín-Caro Álvarez ◽  
Hector Beltran-Alacreu ◽  
Juan Avendaño-Coy ◽  
...  

Transcranial direct current stimulation (tDCS) is a non-invasive, easy to administer, well-tolerated, and safe technique capable of affecting brain excitability, both at the cortical and cerebellum levels. However, its effectiveness has not been sufficiently assessed in all population segments or clinical applications. This systematic review aimed at compiling and summarizing the currently available scientific evidence about the effect of tDCS on functionality in older adults over 60 years of age. A search of databases was conducted to find randomized clinical trials that applied tDCS versus sham stimulation in the above-mentioned population. No limits were established in terms of date of publication. A total of 237 trials were found, of which 24 met the inclusion criteria. Finally, nine studies were analyzed, including 260 healthy subjects with average age between 61.0 and 85.8 years. Seven of the nine included studies reported superior improvements in functionality variables following the application of tDCS compared to sham stimulation. Anodal tDCS applied over the motor cortex may be an effective technique for improving balance and posture control in healthy older adults. However, further high-quality randomized controlled trials are required to determine the most effective protocols and to clarify potential benefits for older adults.


Sign in / Sign up

Export Citation Format

Share Document