scholarly journals Improvement on sound transmission loss through a double-plate structure by connected with a mass–spring–damper system

2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771394 ◽  
Author(s):  
Qibo Mao ◽  
Hui Shen

It is well-known that the acoustic performance of double-plate structures deteriorates rapidly around the mass–air–mass resonance frequency. In this study, a mass–spring–damper system connected between incident and radiating plates is used to improve the sound transmission loss at low-frequency ranges. First, a full structural-acoustic modal coupling model is developed to analyze the vibration and acoustical behaviour of the double-plate structures with mass–spring–damper system. Because there are in-phase or out-of-phase vibrations between double plates, tuning the natural frequency of the mass–spring–damper system exactly to the mass–air–mass resonance frequency cannot guarantee the maximum improvement on transmission loss. Optimal natural frequency and mass of the mass–spring–damper system were found as a solution of optimization problem with a global cost function defined as frequency-averaged sound transmission loss in the desired frequency range (around mass–air–mass resonance frequency). Finally, some numerical calculation results are presented. The calculated results show that the sound transmission loss of a double-plate structure can be improved significantly using optimally tuned mass–spring–damper system. The results indicate that an overall improvement of 12 dB below 1000 Hz can be achieved when the mass of the mass–spring–damper system equals to 10% weight of the double-plate structure.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
A. Putra ◽  
A. Y. Ismail ◽  
R. Ramlan ◽  
Md. R. Ayob ◽  
M. S. Py

A double-leaf partition in engineering structures has been widely applied for its advantages, that is, in terms of its mechanical strength as well as its lightweight property. In noise control, the double-leaf also serves as an effective noise barrier. Unfortunately at low frequency, the sound transmission loss reduces significantly due to the coupling between the panels and the air between them. This paper studies the effect of a microperforated panel (MPP) inserted inside a double-leaf partition on the sound transmission loss performance of the system. The MPP insertion is proposed to provide a hygienic double-leaf noise insulator replacing the classical abrasive porous materials between the panels. It is found that the transmission loss improves at the troublesome mass-air-mass resonant frequency if the MPP is located closer to the solid panel. The mathematical model is derived for normal incidence of acoustic loading.


2020 ◽  
Vol 37 ◽  
pp. 126-133
Author(s):  
Yuan-Wei Li ◽  
Chao-Nan Wang

Abstract The purpose of this study was to investigate the sound insulation of double-leaf panels. In practice, double-leaf panels require a stud between two surface panels. To simplify the analysis, a stud was modeled as a spring and mass. Studies have indicated that the stiffness of the equivalent spring is not a constant and varies with the frequency of sound. Therefore, a frequency-dependent stiffness curve was used to model the effect of the stud to analyze the sound insulation of a double-leaf panel. First, the sound transmission loss of a panel reported by Halliwell was used to fit the results of this study to determine the stiffness of the distribution curve. With this stiffness distribution of steel stud, some previous proposed panels are also analyzed and are compared to the experimental results in the literature. The agreement is good. Finally, the effects of parameters, such as the thickness and density of the panel, thickness of the stud and spacing of the stud, on the sound insulation of double-leaf panels were analyzed.


Sign in / Sign up

Export Citation Format

Share Document