EphrinB2 promotes the human aortic smooth muscle cell growth and migration via mediating F-actin remodeling

Vascular ◽  
2021 ◽  
pp. 170853812110521
Author(s):  
Fan Zhu ◽  
Jia Chen ◽  
Mingyao Luo ◽  
Dongting Yao ◽  
Xiaobo Hu ◽  
...  

Objectives To evaluate the potential effect of EphrinB2 in human thoracic aortic dissection (TAD) and to illustrate the mechanisms governing the role of EphrinB2 in the growth of human aortic smooth muscle cells (HASMC). Methods In the study, EphrinB2 expression was investigated by qRT-PCR and immunohistochemistry in 12 pairs of TAD and adjacent human tissues. HASMCs were used for in vitro experiments. Next, EphrinB2 overexpression and depletion in HASMCs were established by EphrinB2-overexpressing vectors and small interfering RNA, respectively. The transfection efficiency was evaluated by qRT-PCR and Western blot. The effects of overexpression and depletion of EphrinB2 on cell proliferation, migration, and invasion were tested in vitro. Cell Counting Kit-8, flow cytometry and transwell migration/invasion, and wound healing assay were used to explore the function of EphrinB2 on HASMC cell lines. The relationship between EphrinB2 and F-actin was assessed by Western blot, immunofluorescence, and Co-IP. Results We found that EphrinB2 was a prognostic biomarker of TAD patients. Moreover, EphrinB2 expression negatively correlated to aortic dissection tissues, and disease incidence of males, suggesting that EphrinB2 might act as a TAD suppressor by promoting proliferation or decreasing apoptosis in HASMC. Next, over-expression of EphrinB2 in HASMC lines drove cell proliferation, migration, and invasion, and inhibited apoptosis while knockdown EphrinB2 showed the opposite phenomenon, respectively. Furthermore, the level of F-actin in mRNA, protein, and distribution in HASMC cell lines highly matched with the expression of EphrinB2, which indicated that EphrinB2 could mediate the HASMC cytoskeleton via inducing F-actin. Conclusions In conclusion, our results first provided the pivotal role of EphrinB2 in HASMC proliferation initiated by mediating F-actin and demonstrated a prognostic biomarker and the potential targets for therapy to prevent thoracic aortic dissection.

2021 ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background: Circular RNA (circRNA) has been reported as an important regulator in the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and its possible mechanism.Methods: The expression of circRNA_100290 in GC cells and tissues were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated on AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assay, Western blot assay and qRT-PCR were used to explore the downstream pathways of circRNA_100290. The mechanism underlying the regulation of the expression of circRNA_100290 was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays.Results: The expression of circRNA_100290 was found significantly upregulated in GC cells and 102 GC tissues, high expression of circRNA_100290 in GC was closely related to Borrmann’s types, lymph node metastasis and tumor-node-metastasis staging. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, dual-luciferase reporter assay confirmed a direct binding between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene which is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, one of RNA binding proteins (RBPs), could inhibit the formation of circRNA_100290 via enriching flanking sites of circRNA_100290. Low expression of EIF4A3 in GC was related to a worse prognosis.Conclusions: Elevated circRNA_100290 in GC promotes cell proliferation, invasion and EMT via miR-29b-3p/ITGA11 axi and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background Circular RNAs (circRNAs) have been reported to be important regulators of the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and the possible underlying mechanism. Methods The expression of circRNA_100290 in GC cells and tissues was examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated in the AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assays, Western blot assays and qRT-PCR were used to explore the pathways downstream of circRNA_100290. The mechanism underlying the regulation of circRNA_100290 expression was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays. Results The expression of circRNA_100290 was significantly upregulated in GC cells and 102 GC tissues, and high circRNA_100290 expression in GC was closely related to Borrmann’s type, lymph node metastasis and tumour-node-metastasis stage. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, a dual-luciferase reporter assay confirmed the direct interaction between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene that is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, an RNA-binding protein (RBP), could inhibit the formation of circRNA_100290 by binding to the flanking sites of circRNA_100290. Low EIF4A3 expression in GC was related to a poor prognosis. Conclusions Elevated circRNA_100290 expression in GC promotes cell proliferation, invasion and EMT via the miR-29b-3p/ITGA11 axis and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy. Graphical abstract


2020 ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background Circular RNA (circRNA) has been reported as an important regulator in the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and its possible mechanism.Methods The expression of circRNA_100290 in GC cells and tissues were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated on AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assay, Western blot assay and qRT-PCR were used to explore the downstream pathways of circRNA_100290. The mechanism underlying the regulation of the expression of circRNA_100290 was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays.Results The expression of circRNA_100290 was found significantly upregulated in GC cells and 102 GC tissues, high expression of circRNA_100290 in GC was closely related to Borrmann’s types, lymph node metastasis and tumor-node-metastasis staging. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, dual-luciferase reporter assay confirmed a direct binding between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene which is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, one of RNA binding proteins (RBPs), could inhibit the formation of circRNA_100290 via enriching flanking sites of circRNA_100290. Low expression of EIF4A3 in GC was related to a worse prognosis.Conclusions Elevated circRNA_100290 in GC promotes cell proliferation, invasion and EMT via miR-29b-3p/ITGA11 axi and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1749-1761
Author(s):  
Xin Cao ◽  
Xianfeng Meng ◽  
Peng Fu ◽  
Lin Wu ◽  
Zhen Yang ◽  
...  

Abstract Osteosarcoma (OS) is a highly metastatic primary malignant tumor. CircRNA hsa_circ_0028173 (circATP2A2) has been uncovered to be related to the advancement of OS. However, the biological role of circATP2A2 in OS has not been validated. circATP2A2 and MYH9 were upregulated while miR-335-5p was downregulated in OS. OS patients with high circATP2A2 expression displayed a shorter overall survival and the area under curve of circATP2A2 was 0.77, manifesting that circATP2A2 might be a diagnostic and prognostic biomarker. circATP2A2 silencing repressed OS cell proliferation and glycolysis in vivo and constrained OS cell proliferation, glycolysis, migration, and invasion in vitro. circATP2A2 regulated MYH9 expression through sponging miR-335-5p. MiR-335-5p inhibitor reversed the repressive effect of circATP2A2 knockdown on OS cell malignancy and glycolysis. MYH9 overexpression overturned miR-335-5p upregulation-mediated OS cell malignancy and glycolysis. circATP2A2 accelerated OS cell malignancy and glycolysis through upregulating MYH9 via sponging miR-335-5p, offering a promising target for OS treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haibo Yao ◽  
Qinshu Shao ◽  
Yanfei Shao

Objective. To explore the relationship between CTCFL and DPPA2 and validate the positive role of CTCFL/DPPA2 in cell malignant behaviors in gastric cancer. Methods. We predicted gastric cancer-related transcription factors and corresponding target mRNAs through bioinformatics. Levels of CTCFL and DPPA2 were assessed via qRT-PCR and western blot. In vitro experiments were utilized to assay the cell biological behaviors. CHIP was utilized for the assessment of the targeted relationship between CTCFL and DPPA2. Results. CTCFL and DPPA2 were both highly expressed in gastric cancer cells, and high CTCFLL and DPPA2 could promote cell malignant behaviors. CHIP validated that DPPA2 was a target of CTCFL. In addition, high DPPA2 rescued the repressive impact of CTCFL silencing on the cell proliferation, migration, and invasion in gastric cancer. Conclusion. The transcription factor CTCFL fosters cell proliferative, migratory, and invasive properties via activating DPPA2 in gastric cancer.


2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


2018 ◽  
Vol 105 (1) ◽  
pp. 63-75
Author(s):  
Jae Chang Lee ◽  
Sung Ae Koh ◽  
Kyung Hee Lee ◽  
Jae-Ryong Kim

Introduction: Bcl2-associated athanogene 3 (BAG3) is elevated in several types of cancers. However, the role of BAG3 in progression of gastric cancer is unknown. Therefore, the present study aims to find out the role of BAG3 in hepatocyte growth factor (HGF)–mediated tumor progression and the molecular mechanisms by which HGF regulates BAG3 expression. Methods: BAG3 mRNA and protein were measured using reverse transcription polymerase chain reaction and Western blot in the 2 human gastric cancer cell lines, NUGC3 and MKN28, treated with or without HGF. The effects of BAG3 knockdown on cell proliferation, cell invasion, and apoptosis were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro 2-chamber invasion assay, and flow cytometry in BAG3 short hairpin RNA (shRNA)–transfected cells and control cells. The signaling pathways involved in BAG3 that are regulated by HGF were analyzed. The chromatin immunoprecipitation assay was used to determine binding of Egr1 to the BAG3 promoter. Results: BAG3 mRNA and protein levels were increased following treatment with HGF. HGF-mediated BAG3 upregulation increased cell proliferation and cell invasion; however, it decreased apoptosis. HGF-mediated BAG3 upregulation is regulated by an ERK and Egr1-dependent pathway. BAG3 may have an important role in HGF-mediated cell proliferation and metastasis in gastric cancer through an ERK and Egr1-dependent pathway. Conclusion: This pathway may provide novel therapeutic targets and provide information for further identification of other targets of therapeutic significance in gastric cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Cui-Cui Zhao ◽  
Fei-Ran Chen ◽  
Guo-Wei Feng ◽  
Fei Luo ◽  
...  

Background. Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods. We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results. We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed ( P < 0.05 ) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) ( P < 0.05 , respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control ( P < 0.05 , respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion. In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.


Author(s):  
Shan Lei ◽  
Zhiwei He ◽  
Tengxiang Chen ◽  
Xingjun Guo ◽  
Zhirui Zeng ◽  
...  

Abstract Background Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. Methods In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss- and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. Results linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. Conclusion The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1168-1168
Author(s):  
Jerry C. Cheng ◽  
Deepa Shankar ◽  
Stanley F. Nelson ◽  
Kathleen M. Sakamoto

Abstract CREB is a nuclear transcription factor that plays an important role in regulating cellular proliferation, memory, and glucose homeostasis. We previously demonstrated that CREB is overexpressed in bone marrow cells from a subset of patients with acute leukemia at diagnosis. Furthermore, CREB overexpression is associated with an increased risk of relapse and decreased event-free survival in adult AML patients. Transgenic mice that overexpress CREB in myeloid cells developed myeloproliferative/myelodysplastic syndrome after one year. To further understand the role of CREB in leukemogenesis and in normal hematopoiesis, we employed RNA interference methods to inhibit CREB expression. To achieve sustained, CREB-specific gene knockdown in leukemia and normal hematopoietic cells, a lentiviral-based small hairpin (shRNA) approach was taken. Three CREB specific shRNAs were generated and tested for efficiency of gene knockdown in 293T cells. Knockdown efficiency approached 90 percent by Western blot analysis compared to vector alone and luciferase controls. Human myeloid leukemia cell lines, K562, TF1, and MV411, were then infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed using quantitative real time (qRT)-PCR, Western blot analysis, and growth and viability assays. Lentiviral CREB-shRNA achieved between 50 to 90 percent knockdown of CREB compared to control shRNAs at the protein and mRNA levels. To control for non-specific effects, we performed qRT-PCR analysis of the interferon response gene, OAS1, which was not upregulated in cells transduced with CREB shRNA constructs. Within 72 hours, cells transduced with CREB shRNA had decreased proliferation and survival. Similar results were obtained with murine leukemia cells (NFS60 and BA/F3 bcr-abl).To study the role of CREB in normal hematopoiesis, both primary murine and human hematopoietic cells were transduced with our shRNA constructs, and methylcellulose-based colony assays were performed. Primary hematopoietic cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in colony number compared to control virus-infected cells (p&lt;0.05). Bone marrow colonies consisted of myeloid progenitor cells that were mostly Mac-1+ by FACs analysis. Interestingly, there were fewer differentiated cells in the CREB shRNA transduced cells compared to vector control or wild type cells, suggesting that CREB is critical for both myeloid cell proliferation and differentiation. To study the in vivo effects of CREB knockdown on leukemia progression, we studied mice injected with BA/F3 cells that express both bcr/abl with the T315I mutation and a luciferase reporter gene. BA/F3 cells expressing the T315I mutation have a 2-fold increase in CREB overexpression compared to wild-type cells. Disease progression was monitored using bioluminescence imaging with luciferin. CREB knockdown was 90 percent after transduction and prior to injection into SCID mice. We observed improved survival of mice injected with CREB shRNA transduced BA/F3 bcr-abl (T315I) compared to vector control cells. To understand the mechanism of growth suppression resulting from CREB downregulation, we performed microarray analysis with RNA from CREB shRNA transduced K562 and TF1 cells. Several genes were downregulated using a Human Affymetrix chip. Most notable was Beclin1, a tumor suppressor gene often deleted in prostate and breast cancer that has been implicated in autophagy. Our results demonstrate that CREB is required for normal and leukemic cell proliferation both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document