scholarly journals Into the Eyes of the Referee: A Comparison of Elite and Sub-Elite Football Referees’ On-Field Visual Search Behaviour when making Foul Judgements

Author(s):  
T. van Biemen ◽  
R.R.D. Oudejans ◽  
G.J.P. Savelsbergh ◽  
F. Zwenk ◽  
D.L. Mann

In foul decision-making by football referees, visual search is important for gathering task-specific information to determine whether a foul has occurred. Yet, little is known about the visual search behaviours underpinning excellent on-field decisions. The aim of this study was to examine the on-field visual search behaviour of elite and sub-elite football referees when calling a foul during a match. In doing so, we have also compared the accuracy and gaze behaviour for correct and incorrect calls. Elite and sub-elite referees (elite: N = 5, Mage  ±  SD = 29.8 ± 4.7yrs, Mexperience  ±  SD = 14.8 ± 3.7yrs; sub-elite: N = 9, Mage  ±  SD = 23.1 ± 1.6yrs, Mexperience  ±  SD = 8.4 ± 1.8yrs) officiated an actual football game while wearing a mobile eye-tracker, with on-field visual search behaviour compared between skill levels when calling a foul (Nelite = 66; Nsub−elite = 92). Results revealed that elite referees relied on a higher search rate (more fixations of shorter duration) compared to sub-elites, but with no differences in where they allocated their gaze, indicating that elites searched faster but did not necessarily direct gaze towards different locations. Correct decisions were associated with higher gaze entropy (i.e. less structure). In relying on more structured gaze patterns when making incorrect decisions, referees may fail to pick-up information specific to the foul situation. Referee development programmes might benefit by challenging the speed of information pickup but by avoiding pre-determined gaze patterns to improve the interpretation of fouls and increase the decision-making performance of referees.

2009 ◽  
Vol 31 (6) ◽  
pp. 786-797 ◽  
Author(s):  
Peter Catteeuw ◽  
Werner Helsen ◽  
Bart Gilis ◽  
Evelien Van Roie ◽  
Johan Wagemans

The offside decision-making process of international and national assistant referees (ARs) was evaluated using video simulations. A Tobii T120 Eye Tracker was used to record the eye movements. Two hypotheses for explaining incorrect decisions were investigated, namely, the flash-lag effect and the shift of gaze. Performance differences between skill levels were also examined. First, results showed a bias toward flag errors for national ARs as expected by the flash-lag effect. Second, ARs fixated the offside line before, during, and after the precise moment the pass was given, implying there was no shift of gaze from the passer to the receiving attacker. Third, no differences were found in scan patterns between international and national ARs. In conclusion, international ARs seem to have found a strategy to better deal with the perceptual illusion resulting from the flash-lag effect. Based on their experience, they have learned to correct for this illusion, and, consequently, show fewer flag errors.


2014 ◽  
Vol 9 (6) ◽  
pp. 1383-1392 ◽  
Author(s):  
Megan Lorains ◽  
Derek Panchuk ◽  
Kevin Ball ◽  
Clare MacMahon

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Alessandro Piras ◽  
Roberto Lobietti ◽  
Salvatore Squatrito

This paper aimed at comparing expert and novice volleyball players in a visuomotor task using realistic stimuli. Videos of a volleyball setter performing offensive action were presented to participants, while their eye movements were recorded by a head-mounted video based eye tracker. Participants were asked to foresee the direction (forward or backward) of the setter’s toss by pressing one of two keys. Key-press response time, response accuracy, and gaze behaviour were measured from the first frame showing the setter’s hand-ball contact to the button pressed by the participants. Experts were faster and more accurate in predicting the direction of the setting than novices, showing accurate predictions when they used a search strategy involving fewer fixations of longer duration, as well as spending less time in fixating all display areas from which they extract critical information for the judgment. These results are consistent with the view that superior performance in experts is due to their ability to efficiently encode domain-specific information that is relevant to the task.


2010 ◽  
Author(s):  
Nicholas Lurie ◽  
Sam Ransbotham ◽  
Zoey Chen ◽  
Stephen He

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jordan Navarro ◽  
Otto Lappi ◽  
François Osiurak ◽  
Emma Hernout ◽  
Catherine Gabaude ◽  
...  

AbstractActive visual scanning of the scene is a key task-element in all forms of human locomotion. In the field of driving, steering (lateral control) and speed adjustments (longitudinal control) models are largely based on drivers’ visual inputs. Despite knowledge gained on gaze behaviour behind the wheel, our understanding of the sequential aspects of the gaze strategies that actively sample that input remains restricted. Here, we apply scan path analysis to investigate sequences of visual scanning in manual and highly automated simulated driving. Five stereotypical visual sequences were identified under manual driving: forward polling (i.e. far road explorations), guidance, backwards polling (i.e. near road explorations), scenery and speed monitoring scan paths. Previously undocumented backwards polling scan paths were the most frequent. Under highly automated driving backwards polling scan paths relative frequency decreased, guidance scan paths relative frequency increased, and automation supervision specific scan paths appeared. The results shed new light on the gaze patterns engaged while driving. Methodological and empirical questions for future studies are discussed.


2021 ◽  
Vol 11 (8) ◽  
pp. 3296
Author(s):  
Musarrat Hussain ◽  
Jamil Hussain ◽  
Taqdir Ali ◽  
Syed Imran Ali ◽  
Hafiz Syed Muhammad Bilal ◽  
...  

Clinical Practice Guidelines (CPGs) aim to optimize patient care by assisting physicians during the decision-making process. However, guideline adherence is highly affected by its unstructured format and aggregation of background information with disease-specific information. The objective of our study is to extract disease-specific information from CPG for enhancing its adherence ratio. In this research, we propose a semi-automatic mechanism for extracting disease-specific information from CPGs using pattern-matching techniques. We apply supervised and unsupervised machine-learning algorithms on CPG to extract a list of salient terms contributing to distinguishing recommendation sentences (RS) from non-recommendation sentences (NRS). Simultaneously, a group of experts also analyzes the same CPG and extract the initial patterns “Heuristic Patterns” using a group decision-making method, nominal group technique (NGT). We provide the list of salient terms to the experts and ask them to refine their extracted patterns. The experts refine patterns considering the provided salient terms. The extracted heuristic patterns depend on specific terms and suffer from the specialization problem due to synonymy and polysemy. Therefore, we generalize the heuristic patterns to part-of-speech (POS) patterns and unified medical language system (UMLS) patterns, which make the proposed method generalize for all types of CPGs. We evaluated the initial extracted patterns on asthma, rhinosinusitis, and hypertension guidelines with the accuracy of 76.92%, 84.63%, and 89.16%, respectively. The accuracy increased to 78.89%, 85.32%, and 92.07% with refined machine-learning assistive patterns, respectively. Our system assists physicians by locating disease-specific information in the CPGs, which enhances the physicians’ performance and reduces CPG processing time. Additionally, it is beneficial in CPGs content annotation.


2020 ◽  
Vol 57 (12) ◽  
pp. 1392-1401
Author(s):  
Mark P. Pressler ◽  
Emily L. Geisler ◽  
Rami R. Hallac ◽  
James R. Seaward ◽  
Alex A. Kane

Introduction and Objectives: Surgical treatment for trigonocephaly aims to eliminate a stigmatizing deformity, yet the severity that captures unwanted attention is unknown. Surgeons intervene at different points of severity, eliciting controversy. This study used eye tracking to investigate when deformity is perceived. Material and Methods: Three-dimensional photogrammetric images of a normal child and a child with trigonocephaly were mathematically deformed, in 10% increments, to create a spectrum of 11 images. These images were shown to participants using an eye tracker. Participants’ gaze patterns were analyzed, and participants were asked if each image looked “normal” or “abnormal.” Results: Sixty-six graduate students were recruited. Average dwell time toward pathologic areas of interest (AOIs) increased proportionally, from 0.77 ± 0.33 seconds at 0% deformity to 1.08 ± 0.75 seconds at 100% deformity ( P < .0001). A majority of participants did not agree an image looked “abnormal” until 90% deformity from any angle. Conclusion: Eye tracking can be used as a proxy for attention threshold toward orbitofrontal deformity. The amount of attention toward orbitofrontal AOIs increased proportionally with severity. Participants did not generally agree there was “abnormality” until deformity was severe. This study supports the assertion that surgical intervention may be best reserved for more severe deformity.


Sign in / Sign up

Export Citation Format

Share Document