scholarly journals Rediscovering histology: what is new in endoscopy for inflammatory bowel disease?

2021 ◽  
Vol 14 ◽  
pp. 175628482110056
Author(s):  
Virginia Solitano ◽  
Ferdinando D’Amico ◽  
Mariangela Allocca ◽  
Gionata Fiorino ◽  
Alessandra Zilli ◽  
...  

The potential of endoscopic evaluation in the management of inflammatory bowel diseases (IBD) has undoubtedly grown over the last few years. When dealing with IBD patients, histological remission (HR) is now considered a desirable target along with symptomatic and endoscopic remission, due to its association with better long-term outcomes. Consequently, the ability of endoscopic techniques to reflect microscopic findings in vivo without having to collect biopsies has become of upmost importance. In this context, a more accurate evaluation of inflammatory disease activity and the detection of dysplasia represent two mainstay targets for IBD endoscopists. New diagnostic technologies have been developed, such as dye-less chromoendoscopy, endomicroscopy, and molecular imaging, but their real incorporation in daily practice is not yet well defined. Although dye-chromoendoscopy is still recommended as the gold standard approach in dysplasia surveillance, recent research questioned the superiority of this technique over new advanced dye-less modalities [narrow band imaging (NBI), Fuji intelligent color enhancement (FICE), i-scan, blue light imaging (BLI) and linked color imaging (LCI)]. The endoscopic armamentarium might also be enriched by new video capsule endoscopy for monitoring disease activity, and high expectations are placed on the application of artificial intelligence (AI) systems to reduce operator-subjectivity and inter-observer variability. The goal of this review is to provide an updated insight on contemporary knowledge regarding new endoscopic techniques and devices, with special focus on their role in the assessment of disease activity and colorectal cancer surveillance.

1988 ◽  
Vol 27 (03) ◽  
pp. 83-86 ◽  
Author(s):  
B. Briele ◽  
F. Wolf ◽  
H. J. Biersack ◽  
F. F. Knapp ◽  
A. Hotze

A prospective study was initiated to compare the clinically proven results concerning localization/extent and activity of inflammatory bowel diseases with those of 111ln-oxine leukocyte imaging. All patients studied were completely examined with barium enema x-ray, clinical and laboratory investigations, and endoscopy with histopathology. A total of 31 leukocyte scans were performed in 15 patients (12 with Crohn’s disease, 3 with ulcerative colitis). The scans were graded by comparing the cell uptake of a lesion (when present) and a bone marrow area providing a count ratio (CR). The inflammatory lesions were correctly localized on 26 leukocyte scans, and in 21 scans the scintigraphically estimated extent of disease was identical to endoscopy. In 5 cases the disease extent was underestimated, 4 scans in patients with relapse of Crohn’s disease were falsely negative, and in one patient with remission truly negative. The scintigraphically assessed disease activity was also in a good agreement with clinical disease activity based on histopathology in all cases. We conclude that leukocyte imaging provides valuable information about localization and activity of inflammatory bowel disease.


Author(s):  
Armando Tripodi ◽  
Luisa Spina ◽  
Laura Francesca Pisani ◽  
Lidia Padovan ◽  
Flaminia Cavallaro ◽  
...  

Abstract Background Inflammatory bowel diseases (IBD) are characterized by an increased thrombosis risk of uncertain etiology. Coagulation derangement arising from inflammation may be a triggering factor. We hypothesized that strong inflammation inhibitors (eg, anti-tumor necrosis factor-α drugs) may affect coagulation. Methods Forty patients with IBD were compared with 57 control patients for coagulation factors and endogenous thrombin potential (ETP), the latter being the most sensitive marker of in vivo pro- and anticoagulation balance. We measured ETP in the presence and absence of thrombomodulin (the physiologic protein C [PC] activator). Coagulation at different timepoints was also assessed for 28 of these patients during infliximab treatment. Results The median ETP (nM thrombin × minutes) and range (minimum-maximum) were each higher in patients at baseline than in control patients in both the absence (2120 [1611-3041] vs 1865 [1270-2337]) and the presence (1453 [464-2522] vs 831 [104-1741]) of thrombomodulin. The ETP ratio (with/without thrombomodulin) was high at baseline (0.73 [0.21-0.90] vs 0.45 [0.07-0.85]). The ETP and ETP ratio declined during treatment and were significantly lower at the end than at baseline. Factor (F) VIII and fibrinogen, which were high at baseline, decreased during treatment and at the end were significantly lower than at baseline. The FVIII/PC ratio, which was high in patients at baseline, declined during treatment and at the end was lower than at baseline. C-reactive protein recorded at the end of treatment was lower than at baseline. Conclusions Patients with IBD have a procoagulant imbalance as shown by increased ETP at baseline. The ETP decreases during treatment with infliximab, which is related to decreased FVIII and FVIII/PC ratio. This effect is also related to the improvement of inflammation as shown by decreased fibrinogen and C-reactive protein.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Shara Francesca Rapa ◽  
Rosanna Di Paola ◽  
Marika Cordaro ◽  
Rosalba Siracusa ◽  
Ramona D’Amico ◽  
...  

Intestinal epithelial barrier impairment plays a key pathogenic role in inflammatory bowel diseases (IBDs). In particular, together with oxidative stress, intestinal epithelial barrier alteration is considered as upstream event in ulcerative colitis (UC). In order to identify new products of natural origin with a potential activity for UC treatment, this study evaluated the effects of plumericin, a spirolactone iridoid, present as one of the main bioactive components in the bark of Himatanthus sucuuba (Woodson). Plumericin was evaluated for its ability to improve barrier function and to reduce apoptotic parameters during inflammation, both in intestinal epithelial cells (IEC-6), and in an animal experimental model of 2, 4, 6-dinitrobenzene sulfonic acid (DNBS)-induced colitis. Our results indicated that plumericin increased the expression of adhesion molecules, enhanced IEC-6 cells actin cytoskeleton rearrangement, and promoted their motility. Moreover, plumericin reduced apoptotic parameters in IEC-6. These results were confirmed in vivo. Plumericin reduced the activity of myeloperoxidase, inhibited the expression of ICAM-1, P-selectin, and the formation of PAR, and reduced apoptosis parameters in mice colitis induced by DNBS. These results support a pharmacological potential of plumericin in the treatment of UC, due to its ability to improve the structural integrity of the intestinal epithelium and its barrier function.


2021 ◽  
Author(s):  
Shijie He ◽  
Peng Lei ◽  
Wenying Kang ◽  
Priscilla Cheung ◽  
Tao Xu ◽  
...  

SummaryDoes fibrotic gut stiffening caused by inflammatory bowel diseases (IBD) direct the fate of intestinal stem cells (ISCs)? To address this question we first developed a novel long-term culture of quasi-3D gut organoids plated on hydrogel matrix of varying stiffness. Stiffening from 0.6kPa to 9.6kPa significantly reduces Lgr5high ISCs and Ki67+ progenitor cells while promoting their differentiation towards goblet cells. These stiffness-driven events are attributable to YAP nuclear translocation. Matrix stiffening also extends the expression of the stemness marker Olfactomedin 4 (Olfm4) into villus-like regions, mediated by cytoplasmic YAP. We next used single-cell RNA sequencing to generate for the first time the stiffness-regulated transcriptional signatures of ISCs and their differentiated counterparts. These signatures confirm the impact of stiffening on ISC fate and additionally suggest a stiffening-induced switch in metabolic phenotype, from oxidative phosphorylation to glycolysis. Finally, we used colon samples from IBD patients as well as chronic colitis murine models to confirm the in vivo stiffening-induced epithelial deterioration similar to that observed in vitro. Together, these results demonstrate stiffness-dependent ISC reprograming wherein YAP nuclear translocation diminishes ISCs and Ki67+ progenitors and drives their differentiation towards goblet cells, suggesting stiffening as potential target to mitigate gut epithelial deterioration during IBD.


2020 ◽  
Vol 8 (7) ◽  
pp. 1078
Author(s):  
Alexandre Jentzer ◽  
Pauline Veyrard ◽  
Xavier Roblin ◽  
Pierre Saint-Sardos ◽  
Nicolas Rochereau ◽  
...  

Cytomegalovirus (CMV) infects approximately 40% of adults in France and persists lifelong as a latent agent in different organs, including gut. A close relationship is observed between inflammation that favors viral expression and viral replication that exacerbates inflammation. In this context, CMV colitis may impact the prognosis of patients suffering from inflammatory bowel diseases (IBDs), and notably those with ulcerative colitis (UC). In UC, the mucosal inflammation and T helper cell (TH) 2 cytokines, together with immunomodulatory drugs used for controlling flare-ups, favor viral reactivation within the gut, which, in turn, increases mucosal inflammation, impairs corticoid and immunosuppressor efficacy (the probability of steroid resistance is multiplied by more than 20 in the case of CMV colitis), and enhances the risk for colectomy. This review emphasizes the virological tools that are recommended for exploring CMV colitis during inflammatory bowel diseases (IBD) and underlines the interest of using ganciclovir for treating flare-ups associated to CMV colitis in UC patients.


2020 ◽  
Vol 27 (1) ◽  
pp. 10-11
Author(s):  
Yejoo Jeon ◽  
Berkeley N Limketkai

The Mediterranean diet was recently shown to benefit hepatic steatosis and disease activity in inflammatory bowel diseases. These findings advance our knowledge on dietary approaches for IBD and motivate inquiry on the role of obesity in IBD pathogenesis.


2019 ◽  
Vol 10 (2) ◽  
pp. 1132-1145 ◽  
Author(s):  
Meiling Liu ◽  
Xiuxia Zhang ◽  
Yunpeng Hao ◽  
Jinhua Ding ◽  
Jing Shen ◽  
...  

Multiple articles have confirmed that an imbalance of the intestinal microbiota is closely related to aberrant immune responses of the intestines and to the pathogenesis of inflammatory bowel diseases (IBDs).


Author(s):  
Yonghong Yang ◽  
Cui Zhang ◽  
Dehuai Jing ◽  
Heng He ◽  
Xiaoyu Li ◽  
...  

Abstract Background Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn’s disease (CD), are chronic inflammatory disorders. As is well known, interferon regulatory factor (IRF) 5 is closely associated with the pathogenesis of various inflammatory diseases. But the exact role of IRF5 in IBD remains unclear. Methods In this study, we detected IRF5 expression in peripheral blood mononuclear cells (PBMCs) and inflamed mucosa from IBD patients by immunohistochemistry, western blot, and quantitative real-time polymerase chain reaction. Peripheral blood CD4+ T cells were stimulated with inflammatory cytokines and transfected by lentivirus. Results In active IBD patients, the expression of IRF5 in PBMCs and inflamed colonic tissues was obviously increased and significantly associated with disease activity. Ectopic overexpression of IRF5 could promote the differentiation of IBD CD4+ T cells into Th1 and Th17 cells by regulating T-bet and RAR related orphan receptor C, whereas knockdown of IRF5 had the opposite effects. Tumor necrosis factor (TNF)-α upregulated expression of IRF5 in CD4+ T cells, but anti-TNF treatment with infliximab could markedly reduce IRF5 expression in CD4+ T cells and intestinal mucosa of CD patients. Conclusion Our study reveals a novel mechanism that IRF5 levels are correlated with disease activity in IBD and might function as a possible marker for the management of IBD via regulating Th1 and Th17 immune responses and cytokine production.


2019 ◽  
Vol 13 (Supplement_1) ◽  
pp. S436-S437
Author(s):  
L Godskesen ◽  
M Lindholm ◽  
J Høg Mortensen ◽  
A Krag ◽  
T Manon-Jensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document