scholarly journals Development, Implementation, and Evaluation of an In-Hospital Optimized Early Warning Score for Patient Deterioration

2020 ◽  
Vol 5 (1) ◽  
pp. 238146831989966 ◽  
Author(s):  
Cara O’Brien ◽  
Benjamin A. Goldstein ◽  
Yueqi Shen ◽  
Matthew Phelan ◽  
Curtis Lambert ◽  
...  

Background. Identification of patients at risk of deteriorating during their hospitalization is an important concern. However, many off-shelf scores have poor in-center performance. In this article, we report our experience developing, implementing, and evaluating an in-hospital score for deterioration. Methods. We abstracted 3 years of data (2014–2016) and identified patients on medical wards that died or were transferred to the intensive care unit. We developed a time-varying risk model and then implemented the model over a 10-week period to assess prospective predictive performance. We compared performance to our currently used tool, National Early Warning Score. In order to aid clinical decision making, we transformed the quantitative score into a three-level clinical decision support tool. Results. The developed risk score had an average area under the curve of 0.814 (95% confidence interval = 0.79–0.83) versus 0.740 (95% confidence interval = 0.72–0.76) for the National Early Warning Score. We found the proposed score was able to respond to acute clinical changes in patients’ clinical status. Upon implementing the score, we were able to achieve the desired positive predictive value but needed to retune the thresholds to get the desired sensitivity. Discussion. This work illustrates the potential for academic medical centers to build, refine, and implement risk models that are targeted to their patient population and work flow.

2021 ◽  
Vol 11 (3) ◽  
pp. 170
Author(s):  
Francisco Martín-Rodríguez ◽  
José L. Martín-Conty ◽  
Ancor Sanz-García ◽  
Virginia Carbajosa Rodríguez ◽  
Guillermo Ortega Rabbione ◽  
...  

Early warning scores (EWSs) help prevent and recognize and thereby act as the first signs of clinical and physiological deterioration. The objective of this study is to evaluate different EWSs (National Early Warning Score 2 (NEWS2), quick sequential organ failure assessment score (qSOFA), Modified Rapid Emergency Medicine Score (MREMS) and Rapid Acute Physiology Score (RAPS)) to predict mortality within the first 48 h in patients suspected to have Coronavirus disease 2019 (COVID-19). We conducted a retrospective observational study in patients over 18 years of age who were treated by the advanced life support units and transferred to the emergency departments between March and July of 2020. Each patient was followed for two days registering their final diagnosis and mortality data. A total of 663 patients were included in our study. Early mortality within the first 48 h affected 53 patients (8.3%). The scale with the best capacity to predict early mortality was the National Early Warning Score 2 (NEWS2), with an area under the curve of 0.825 (95% CI: 0.75–0.89). The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients presented an area under the curve (AUC) of 0.804 (95% CI: 0.71–0.89), and the negative ones with an AUC of 0.863 (95% CI: 0.76–0.95). Among the EWSs, NEWS2 presented the best predictive power, even when it was separately applied to patients who tested positive and negative for SARS-CoV-2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261376
Author(s):  
Pugazhvannan CR ◽  
Ilavarasi Vanidassane ◽  
Dhivya Pownraj ◽  
Ravichandran Kandasamy ◽  
Aneesh Basheer

Background While several parameters have emerged as predictors of prognosis of COVID-19, a simple clinical score at baseline might help early risk stratification. We determined the ability of National Early Warning Score 2 (NEWS2) to predict poor outcomes among adults with COVID-19. Methods A prospective study was conducted on 399 hospitalised adults with confirmed SARS-CoV-2 infection between August and December 2020. Baseline NEWS2 score was determined. Primary outcome was poor outcomes defined as need for mechanical ventilation or death within 28 days. The sensitivity, specificity and Area under the curve were determined for NEWS2 scores of 5 and 6. Results Mean age of patients was 55.5 ± 14.8 years and 275 of 399 (68.9%) were male. Overall mortality was 3.8% and 7.5% had poor outcomes. Median (interquartile range) NEWS2 score at admission was 2 (0–6). Sensitivity and specificity of NEWS 2 of 5 or more in predicting poor outcomes was 93.3% (95% CI: 76.5–98.8) and 70.7% (95% CI: 65.7–75.3) respectively [area under curve 0.88 (95% CI: 0.847–0.927)]. Age, baseline pulse rate, baseline oxygen saturation, need for supplemental oxygen and ARDS on chest X ray were independently associated with poor outcomes. Conclusions NEWS2 score of 5 or more at admission predicts poor outcomes in patients with COVID-19 with good sensitivity and can easily be applied for risk stratification at baseline. Further studies are needed in the Indian setting to validate this simple score and recommend widespread use.


BMJ Open ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. e031596 ◽  
Author(s):  
Muhammad Faisal ◽  
Donald Richardson ◽  
Andy Scally ◽  
Robin Howes ◽  
Kevin Beatson ◽  
...  

ObjectivesIn the English National Health Service, the patient’s vital signs are monitored and summarised into a National Early Warning Score (NEWS) to support clinical decision making, but it does not provide an estimate of the patient’s risk of death. We examine the extent to which the accuracy of NEWS for predicting mortality could be improved by enhanced computer versions of NEWS (cNEWS).DesignLogistic regression model development and external validation study.SettingTwo acute hospitals (YH—York Hospital for model development; NH—Northern Lincolnshire and Goole Hospital for external model validation).ParticipantsAdult (≥16 years) medical admissions discharged over a 24-month period with electronic NEWS (eNEWS) recorded on admission are used to predict mortality at four time points (in-hospital, 24 hours, 48 hours and 72 hours) using the first electronically recorded NEWS (model M0) versus a cNEWS model which included age+sex (model M1) +subcomponents of NEWS (including diastolic blood pressure) (model M2).ResultsThe risk of dying in-hospital following emergency medical admission was 5.8% (YH: 2080/35 807) and 5.4% (NH: 1900/35 161). The c-statistics for model M2 in YH for predicting mortality (in-hospital=0.82, 24 hours=0.91, 48 hours=0.88 and 72 hours=0.88) was higher than model M0 (in-hospital=0.74, 24 hours=0.89, 48 hours=0.86 and 72 hours=0.85) with higher Positive Predictive Value (PPVs) for in-hospital mortality (M2 19.3% and M0 16.6%). Similar findings were seen in NH. Model M2 performed better than M0 in almost all major disease subgroups.ConclusionsAn externally validated enhanced computer-aided NEWS model (cNEWS) incrementally improves on the performance of a NEWS only model. Since cNEWS places no additional data collection burden on clinicians and is readily automated, it may now be carefully introduced and evaluated to determine if it can improve care in hospitals that have eNEWS systems.


BMJ Open ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. e028219
Author(s):  
Michelle Helena Van Velthoven ◽  
Felicia Adjei ◽  
Dimitris Vavoulis ◽  
Glenn Wells ◽  
David Brindley ◽  
...  

IntroductionThe National Early Warning Score is used as standard clinical practice in the UK as a track and trigger system to monitor hospitalised patients. Currently, nurses are tasked to take routine vital signs measurements and manually record these on a clinical chart. Wearable devices could provide an easier, reliable, more convenient and cost-effective method of monitoring. Our aim is to evaluate the clinical validity of Polso (ChroniSense Medical, Yokneam Illit, Israel), a wrist-based device, to provide National Early Warning Scores.Methods and analysisWe will compare Polso National Early Warning Score measurements to the currently used manual measurements in a UK Teaching District General Hospital. Patients aged 18 years or above who require recordings of observations of vital signs at least every 6 hours will be enrolled after consenting. The sample size for the study was calculated to be 300 participants based on the assumption that the final dataset will include four pairs of measurements per-patient and per-vital sign, resulting in a total of 1200 pairs of data points per vital sign. The primary outcome is the agreement on the individual parameter scores and values of the National Early Warning Score: (1) respiratory rate, (2) oxygen saturation, (3) body temperature, (4) systolic blood pressure and (5) heart rate. Secondary outcomes are the agreement on the aggregate National Early Warning Score. The incidence of adverse events will be recorded. The measurements by the device will not be used for the clinical decision-making in this study.Ethics and disseminationWe obtained ethical approval, reference number 18/LO/0123 from London—Hampstead Research Ethics Committee, through the Integrated Research Application System, (reference number: 235 034. The study received no objection from the Medicine and Health Regulatory Authority, reference number: CI/20018/005 and has National Institute for Health Research portfolio adoption status CPMS number: 32 532.Trial registration numberNCT03448861; Pre-results.


Sexual Abuse ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 374-396 ◽  
Author(s):  
Alessandro Tadei ◽  
Johan Pensar ◽  
Jukka Corander ◽  
Katarina Finnilä ◽  
Pekka Santtila ◽  
...  

In assessments of child sexual abuse (CSA) allegations, informative background information is often overlooked or not used properly. We therefore created and tested an instrument that uses accessible background information to calculate the probability of a child being a CSA victim that can be used as a starting point in the following investigation. Studying 903 demographic and socioeconomic variables from over 11,000 Finnish children, we identified 42 features related to CSA. Using Bayesian logic to calculate the probability of abuse, our instrument—the Finnish Investigative Instrument of Child Sexual Abuse (FICSA)—has two separate profiles for boys and girls. A cross-validation procedure suggested excellent diagnostic utility (area under the curve [AUC] = 0.97 for boys and AUC = 0.88 for girls). We conclude that the presented method can be useful in forensic assessments of CSA allegations by adding a reliable statistical approach to considering background information, and to support clinical decision making and guide investigative efforts.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e045469
Author(s):  
Rachel Stocker ◽  
Siân Russell ◽  
Jennifer Liddle ◽  
Robert O Barker ◽  
Adam Remmer ◽  
...  

BackgroundThe COVID-19 pandemic has taken a heavy toll on the care home sector, with residents accounting for up to half of all deaths in Europe. The response to acute illness in care homes plays a particularly important role in the care of residents during a pandemic. Digital recording of a National Early Warning Score (NEWS), which involves the measurement of physical observations, started in care homes in one area of England in 2016. Implementation of a NEWS intervention (including equipment, training and support) was accelerated early in the pandemic, despite limited evidence for its use in the care home setting.ObjectivesTo understand how a NEWS intervention has been used in care homes in one area of North-East England during the COVID-19 pandemic, and how it has influenced resident care, from the perspective of stakeholders involved in care delivery and commissioning.MethodsA qualitative interview study with care home (n=10) and National Health Service (n=7) staff. Data were analysed using thematic analysis.ResultsUse of the NEWS intervention in care homes in this area accelerated during the COVID-19 pandemic. Stakeholders felt that NEWS, and its associated education and support package, improved the response of care homes and healthcare professionals to deterioration in residents’ health during the pandemic. Healthcare professionals valued the ability to remotely monitor resident observations, which facilitated triage and treatment decisions. Care home staff felt empowered by NEWS, providing a common clinical language to communicate concerns with external services, acting as an adjunct to staff intuition of resident deterioration.ConclusionsThe NEWS intervention formed an important part of the care home response to COVID-19 in the study area. Positive staff perceptions now need to be supplemented with data on the impact on resident health and well-being, workload, and service utilisation, during the pandemic and beyond.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e040361
Author(s):  
Amanda Klinger ◽  
Ariel Mueller ◽  
Tori Sutherland ◽  
Christophe Mpirimbanyi ◽  
Elie Nziyomaze ◽  
...  

RationaleMortality prediction scores are increasingly being evaluated in low and middle income countries (LMICs) for research comparisons, quality improvement and clinical decision-making. The modified early warning score (MEWS), quick Sequential (Sepsis-Related) Organ Failure Assessment (qSOFA), and Universal Vital Assessment (UVA) score use variables that are feasible to obtain, and have demonstrated potential to predict mortality in LMIC cohorts.ObjectiveTo determine the predictive capacity of adapted MEWS, qSOFA and UVA in a Rwandan hospital.Design, setting, participants and outcome measuresWe prospectively collected data on all adult patients admitted to a tertiary hospital in Rwanda with suspected infection over 7 months. We calculated an adapted MEWS, qSOFA and UVA score for each participant. The predictive capacity of each score was assessed including sensitivity, specificity, positive and negative predictive value, OR, area under the receiver operating curve (AUROC) and performance by underlying risk quartile.ResultsWe screened 19 178 patient days, and enrolled 647 unique patients. Median age was 35 years, and in-hospital mortality was 18.1%. The proportion of data missing for each variable ranged from 0% to 11.7%. The sensitivities and specificities of the scores were: adapted MEWS >4, 50.4% and 74.9%, respectively; qSOFA >2, 24.8% and 90.4%, respectively; and UVA >4, 28.2% and 91.1%, respectively. The scores as continuous variables demonstrated the following AUROCs: adapted MEWS 0.69 (95% CI 0.64 to 0.74), qSOFA 0.65 (95% CI 0.60 to 0.70), and UVA 0.71 (95% CI 0.66 to 0.76); there was no statistically significant difference between the discriminative capacities of the scores.ConclusionThree scores demonstrated a modest ability to predict mortality in a prospective study of inpatients with suspected infection at a Rwandan tertiary hospital. Careful consideration must be given to their adequacy before using them in research comparisons, quality improvement or clinical decision-making.


Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 169
Author(s):  
Sergi Gómez-Quintana ◽  
Christoph E. Schwarz ◽  
Ihor Shelevytsky ◽  
Victoriya Shelevytska ◽  
Oksana Semenova ◽  
...  

The current diagnosis of Congenital Heart Disease (CHD) in neonates relies on echocardiography. Its limited availability requires alternative screening procedures to prioritise newborns awaiting ultrasound. The routine screening for CHD is performed using a multidimensional clinical examination including (but not limited to) auscultation and pulse oximetry. While auscultation might be subjective with some heart abnormalities not always audible it increases the ability to detect heart defects. This work aims at developing an objective clinical decision support tool based on machine learning (ML) to facilitate differentiation of sounds with signatures of Patent Ductus Arteriosus (PDA)/CHDs, in clinical settings. The heart sounds are pre-processed and segmented, followed by feature extraction. The features are fed into a boosted decision tree classifier to estimate the probability of PDA or CHDs. Several mechanisms to combine information from different auscultation points, as well as consecutive sound cycles, are presented. The system is evaluated on a large clinical dataset of heart sounds from 265 term and late-preterm newborns recorded within the first six days of life. The developed system reaches an area under the curve (AUC) of 78% at detecting CHD and 77% at detecting PDA. The obtained results for PDA detection compare favourably with the level of accuracy achieved by an experienced neonatologist when assessed on the same cohort.


Sign in / Sign up

Export Citation Format

Share Document