Unruly Mountains: Hydropower assemblages and geological surprises in the Indian Himalayas

2021 ◽  
pp. 251484862110507
Author(s):  
Saumya Vaishnava ◽  
Jennifer Baka

Despite a decades long push to develop what is seen as the vast untapped hydropower potential of the Indian Himalayas, hydropower capacity addition has been delayed and become increasingly expensive in India. Policy documents cite “poor” geology as a major reason for these delays. As hydropower in the form of run-of-river projects expand into the Himalayas, their construction activities encounter poor geology more frequently. This paper analyses hydropower development as an assemblage and examines how risk, especially geological risk, is negotiated to allow hydropower development to continue in the Indian Himalayas. We show how the category of “geological surprises” emerges as an institutional response to the problems of run-of-river based hydropower development in a seismically vulnerable landscape. We further show how “geological surprises” act as a boundary object between hydropower policy, project development, infrastructural finance, and hydropower knowledge, allowing for cooperation and negotiation, to allow hydropower development to continue in the geologically complex Himalayas.

2021 ◽  
Author(s):  
Sanita Dhaubanjar ◽  
Arthur F. Lutz ◽  
David Gernaat ◽  
Santosh Nepal ◽  
Saurav Pradhananga ◽  
...  

<p>Considering the lack of a comprehensive assessement of hydropower potential in the Upper Indus basin, we developed and implemented a systematic framework to explore four different classes of hydropower potential. Our framework uses high-resolution discharge generated by a coupled cryosphere-hydrology model as the bio-physical boundary conditions to estimate theoretical potential. Thereafter, diverse context-specific constraints are implemented stepwise to estimate the technical, economic and sustainable hydropower potential. The successive classes of hydropower potential integrate considerations for various water demands under the water-energy-food nexus, multiple geo-hazard risks, climate change, environmental protection, and socio-economic preferences. We demonstrate that the nearly two thousand Terawatt-hour of theoretical potential available annualy in the upper Indus can be misleading because a majority of this is technically and economically not viable. Even smaller potential remains if we account for the various sustainability constraints that vary spatially. Our concept of the sustainable hydropower potential enables decision makers to look beyond the energy sector when selecting hydropower projects for development to achieveenergy security under the Sustainable Development Goal 7 (SDG7).The generated portfolio of sustainable hydropower projects is superior to the current portfolio based on outdated studies because our method looks beyond theoretical possibilities and excludes projects that conflict with management objectives under other SDGs. The spatial maps with potential and the cost curves for hydropower production provide a science-based knowledge base for hydropower development in the Indus basin. Our method could similarly be adapted to inform hydropower development in other basins across the globe.</p>


2021 ◽  
Author(s):  
Suyog Chaudhari ◽  
Erik Brown ◽  
Raul Quispe-Abad ◽  
Emilio Moran ◽  
Norbert Mueller ◽  
...  

<p>Given the ongoing and planned hydropower development projects in the Amazon River basin, appalling losses in biodiversity, river ecology and river connectivity are inevitable. These hydropower projects are proposed to be built in exceptionally endemic sites, setting records in environmental losses by impeding fish movement, altering flood pulse, causing large-scale deforestation, and increasing greenhouse gas emissions. With the burgeoning energy demand combined with the aforementioned negative impacts of conventional hydropower technology, there is an imminent need to re-think the design of hydropower to avoid the potentially catastrophic consequences of large dams. It is certain that the Amazon will undergo some major hydrological changes in the near future because of the compounded effects of climate change and proposed dams, if built with the conventional hydropower technology. In this study, we present a transformative hydropower outlook that integrates low-head hydropower technology (e.g., in-stream turbines) and multiple environmental aspects, such as river ecology and protected areas. We employ a high resolution (~2km) continental scale hydrological model called LEAF-Hydro-Flood (LHF) to assess the in-stream hydropower potential in the Amazon River basin. We particularly focus on quantifying the potential and feasibility of employing instream turbines in the Amazon instead of building large dams. We show that a significant portion of the total energy planned to be generated from conventional hydropower in the Brazilian Amazon could be harnessed using in-stream turbines that utilize kinetic energy of water without requiring storage. Further, we also find that implementing in-stream turbines as an alternative to large storage-based dams could prove economically feasible, since most of the environmental and social costs associated with dams are eliminated. Our results open multiple pathways to achieve sustainable hydropower development in the Amazon to meet the ever-increasing energy demands while minimizing hydrological, social, and ecological impacts. It also provides important insight for sustainable hydropower development in other global regions. The results presented are based on a manuscript under revision for Nature Sustainability.</p>


2016 ◽  
Vol 19 ◽  
pp. 11-15
Author(s):  
Rabindra Bahadur Shrestha

For half a century, Nepal has been chanting the ‘Mantra’ of 83,000 MW hydropower potential. When Nepal was in its childhood as a young democratic nation in the 1950s, India, with its vast ‘experience’ under the British colonial rule (colonial mindset), extracted lop-sided agreements on the Koshi, Gandaki and Mahakali rivers.Whereas India irrigates 12,200,000 acres of land, flood mitigates flood hazards and benefits from other intangible benefits. Nepal gets a meager 160,000 acres irrigation facility (1.3 percent of total irrigation benefits) from these unequivocal biased agreements. The adverse social and ecological impacts in Nepal are unaccounted for.Such water resource agreements have resulted in the sad present-day plight of Nepal: social life and industries are in total disarray with dismally low economic growth rates (GDP) forcing millions of Nepalese to seek employment abroad.Before it gets out of hand, India’s direct/indirect domination over Nepal’s water resources and politics should end, so that Nepal can develop its economy and hydropower in peace.Nepal should first develop run-of-river projects as per the modality of 456 MW Upper Tamakoshi Hydroelectric Project (cost 1000 US$/kWh) and medium size storage hydropower projects (140 MW Tanahu). Muddling with large storage projects like 1200 MW Budhi Gandaki HEP will only further delay the execution of RoR projects. NEA’s technical capability should be improved to build and oversee hydropower projects and INPS.HYDRO Nepal JournalJournal of Water, Energy and EnvironmentIssue: 19Page: 11- 15


2014 ◽  
Vol 140 (8) ◽  
pp. 04014016 ◽  
Author(s):  
M. Fayzul K. Pasha ◽  
Dilruba Yeasmin ◽  
Shih-Chieh Kao ◽  
Boualem Hadjerioua ◽  
Yaxing Wei ◽  
...  

1970 ◽  
Vol 7 ◽  
pp. 8-13 ◽  
Author(s):  
Raghunath Jha

The total hydropower potential of Nepal was assessed as 83,500 MW in 1966 by Dr. Hari Man Shrestha dur-ing his PhD research work in former USSR. Since then, no further study has been done in this feld. The hydropower potential estimate has been used by Nepal Electricity Authority (NEA), Water and Energy Commission Secretariat (WECS) and Department of Electricity Development (DOED) for power development, licensing and policy making. However, keeping in view recent advancements in computer technology that offer many benefits to the field of water resources and the importance of power estimation in Nepal, Dr. Shrestha’s estimate needs further review and updat-ing. The present study has mainly used the hydro-meteorological data of Department of Hydrology and Meteorology (DHM) for hydrological analysis of all the rivers in Nepal including the three big rivers, viz., Saptakoshi, Narayani and Karnali, and other medium and small rivers. Incorporating GIS and the Hydropower Model that has specifcally been developed by the author, the power potential and annual energy estimate on an run-of-the-river (ROR) basis of the entire country has been worked out. The result shows that the power potential and annual energy estimates of Na-rayani, Saptakoshi and Karnali River basins at Q40% (fow exceedence) and 80% efficiency are 17800, 17008, 15661 MW and 113373, 108817, 102324 GWh, respectively. The Mahakali River would yield only 2262 MW of hydropower and 14981 GWh of energy annually. The other water sources in Nepal would have a total power potential of 1105 MW and a combined annual energy of 7043 GWh. Thus, the total hydropower potential and corresponding annual energy capacity of Nepal on a ROR basis at Q40%, and 80% efficiency is 53,836 MW and 346538 GWh, respectively.Key words: Hydropower potential; Run-of-River (ROR); GIS; Hydropower Model; NepalDOI: 10.3126/hn.v7i0.4226Hydro Nepal Journal of Water, Energy and Environment Vol 7, July, 2010Page: 8-13Uploaded date: 31 January, 2011


2016 ◽  
Vol 13 (2) ◽  
pp. 300-309 ◽  
Author(s):  
Jaunius Jatautas ◽  
Egidijus Kasiulis

The article analyzes the effect of the Lithuanian legislation on hydropower development via the document content analysis and comparative analysis of legislation and scientific literature. The main focus of the article is on assessing the hydropower potential in line with the environmental legislation and establishing the possible development priorities. Effective legislative activity and energy sector management stimulate the production and consumption of electricity from renewable energy (RE) sources, which serve as an alternative to organic fuel, while in Lithuania, non-harmonized legislation creates barriers for effective and socially beneficial use of hydropower. The environmental policy in Lithuania is one of the most rigorous in the European Union. The unconditional prohibition of dam building in ecologically and culturally valuable rivers means that the untapped hydropower potential in Lithuania is only 5%


Sign in / Sign up

Export Citation Format

Share Document