A database of seismic designs, nonlinear models, and seismic responses for steel moment-resisting frame buildings

2020 ◽  
pp. 875529302097120
Author(s):  
Xingquan Guan M.EERI ◽  
Henry Burton M.EERI ◽  
Mehrdad Shokrabadi

A number of simplified methodologies have been developed and used to estimate seismic drift demands in buildings. However, none of them have been systematically tested against a large number of buildings subjected to a diverse set of ground motions. This is partly attributed to the lack of existing databases of building designs, nonlinear structural models, and simulated seismic responses. This article introduces the development of a comprehensive database, which includes 621 special steel moment-resisting frames designed in accordance with modern codes and standards and their corresponding nonlinear structural models and seismic responses (i.e. peak story drifts, peak floor accelerations, and residual story drifts). The seismic responses for a subgroup of 100 steel moment-resisting frames subjected to three groups of site-specific ground motions (with 40 records each), at the service-level, design-based, and maximum considered earthquakes, are also included. The database has been utilized by the authors (in a separate study) to evaluate the performance of existing methods and develop data-driven and hybrid (combination of mechanics-based and data-driven) models for estimating seismic structural drift demands. The database can also be utilized in the development and implementation of a performance-based analytics-driven seismic design methodology.

2016 ◽  
Vol 847 ◽  
pp. 222-232
Author(s):  
Bora Aksar ◽  
Selcuk Dogru ◽  
Bulent Akbas ◽  
Jay Shen ◽  
Onur Seker ◽  
...  

This study focuses on exploring the seismic axial loads for columns in steel moment resisting frames (SMRFs) under strong ground motions. For this purpose, the increases in axial loads are investigated at the maximum lateral load level and the corresponding lateral displacement. The results are presented in terms of maximum amplification factors (Ω0) of all frame columns under the selected ground motions and axial load-moment levels in columns. four typical steel moment resisting frames representing typical low, medium and high rise steel buildings are designed based on the seismic design requirement in ASCE 7-10 and AISC 341-10 . An ensemble of ground motions range from moderate to severe are selected to identify the seismic response of each frames. Two sets of ground motions corresponding to 10% and 2% probability of exceedance are used in nonlinear dynamic time history analyses.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1646-1664
Author(s):  
Elena Elettore ◽  
Annarosa Lettieri ◽  
Fabio Freddi ◽  
Massimo Latour ◽  
Gianvittorio Rizzano

2021 ◽  
Vol 244 ◽  
pp. 112751
Author(s):  
Carlos Molina Hutt ◽  
Shervin Zahedimazandarani ◽  
Nasser A. Marafi ◽  
Jeffrey W. Berman ◽  
Marc O. Eberhard

Sign in / Sign up

Export Citation Format

Share Document