scholarly journals Genetic diversity in merozoite surface protein-1 and 2 amongPlasmodium falciparumisolates from malarious districts of tribal dominant state of Jharkhand, India

2011 ◽  
Vol 105 (8) ◽  
pp. 579-592 ◽  
Author(s):  
M M Hussain ◽  
M Sohail ◽  
R Kumar ◽  
O H Branch ◽  
T Adak ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qinwen Xu ◽  
Sihong Liu ◽  
Kokouvi Kassegne ◽  
Bo Yang ◽  
Jiachen Lu ◽  
...  

Abstract Background Merozoite surface protein 1 (MSP1) plays an essential role in erythrocyte invasion by malaria parasites. The C-terminal 19-kDa region of MSP1 has long been considered one of the major candidate antigens for a malaria blood-stage vaccine against Plasmodium falciparum. However, there is limited information on the C-terminal 19-kDa region of Plasmodium ovale MSP1 (PoMSP119). This study aims to analyze the genetic diversity and immunogenicity of PoMSP119. Methods A total of 37 clinical Plasmodium ovale isolates including Plasmodium ovale curtisi and Plasmodium ovale wallikeri imported from Africa into China and collected during the period 2012–2016 were used. Genomic DNA was used to amplify P. ovale curtisi (poc) msp119 (pocmsp119) and P. ovale wallikeri (pow) msp119 (powmsp119) genes by polymerase chain reaction. The genetic diversity of pomsp119 was analyzed using the GeneDoc version 6 programs. Recombinant PoMSP119 (rPoMSP119)-glutathione S-transferase (GST) proteins were expressed in an Escherichia coli expression system and analyzed by western blot. Immune responses in BALB/c mice immunized with rPoMSP119-GST were determined using enzyme-linked immunosorbent assay. In addition, antigen-specific T cell responses were assessed by lymphocyte proliferation assays. A total of 49 serum samples from healthy individuals and individuals infected with P. ovale were used for the evaluation of natural immune responses by using protein microarrays. Results Sequences of pomsp119 were found to be thoroughly conserved in all the clinical isolates. rPoMSP119 proteins were efficiently expressed and purified as ~ 37-kDa proteins. High antibody responses in mice immunized with rPoMSP119-GST were observed. rPoMSP119-GST induced high avidity indexes, with an average of 92.57% and 85.32% for rPocMSP119 and rPowMSP119, respectively. Cross-reactivity between rPocMSP119 and rPowMSP119 was observed. Cellular immune responses to rPocMSP119 (69.51%) and rPowMSP119 (52.17%) induced in rPocMSP119- and rPowMSP119-immunized mice were found in the splenocyte proliferation assays. The sensitivity and specificity of rPoMSP119-GST proteins for the detection of natural immune responses in patients infected with P. ovale were 89.96% and 75%, respectively. Conclusions This study revealed highly conserved gene sequences of pomsp119. In addition, naturally acquired humoral immune responses against rPoMSP1 were observed in P. ovale infections, and high immunogenicity of rPoMSP119 in mice was also identified. These instructive findings should encourage further testing of PoMSP119 for rational vaccine design. Graphical abstract


2018 ◽  
Vol 14 (4) ◽  
pp. 106-109
Author(s):  
Rosye Hefmi Rechnelty Tanjung ◽  
Yulius Sarungu ◽  
Meidy Johana Imbiri ◽  
Ade Irma Resmol ◽  
Dirk Yanes Persius Runtuboi ◽  
...  

2005 ◽  
Vol 73 (5_suppl) ◽  
pp. 55-61 ◽  
Author(s):  
ZILKA I. TERRIENTES ◽  
KENTON KRAMER ◽  
SANDRA P. CHANG ◽  
JUANA VERGARA ◽  
SÓCRATES HERRERA

2021 ◽  
Author(s):  
Zainab Bibi ◽  
Anam Fatima ◽  
Rehana Rani ◽  
Ayesha Maqbool ◽  
Samea Khan ◽  
...  

Abstract Background: Plasmodium vivax contributes to over 70% malaria burden in Pakistan, but limited data exists on various aspects including genetic diversity of the parasite as compared to other parts of the world. Since the information about the genetic diversity of P. vivax assists to understand the population dynamics of the parasite, the current study was designed to understand population divergence of Plasmodium vivax in Pakistan using circumsporozoite protein (pvcsp) and merozoite surface protein-1 (pvmsp-1) genes as molecular markers. Methods: The PCR for pvcsp and pvmsp-1 genes was carried out for 150 P. vivax isolates followed by DNA sequencing of only 35 and 30 respective amplified PCR products for both pvcsp and pvmsp-1 genes. Genetic diversity and polymorphism were analyzed using ChromasPro, ClustalW, MEGA7, DnaSP v.5 and WebLogo programs. Results: The PCR for pvcsp and pvmsp-1 genes was carried out for 150 P. vivax isolates and resulting the PCR products ranging from 900 to 1100 bp for pvcsp and ~400bp for pvmsp-1 genes, respectively. In the central-repeat region (CRR) of pvcsp gene, sequences comprised of four variable repeats of PRMs, out of which GDRADGQPA (PRM1), GDRAAGQPA (PRM2) were more extensively dispersed among the P. vivax isolates. Partial sequences (~400bp) of block 2 of pvmsp-1 gene depicted high level of diversity.Conclusion: The results revealed the polymorphism and genetic diversity especially at the CRR of pvcsp and block 2 of pvmsp-1 genes respectively. The base-line data presented here warrants future studies to investigate more into the genetic diversity of P. vivax with large sample size from across the country for better understanding of population dynamics of P. vivax that will help to control malaria at individual and community level.


2021 ◽  
Author(s):  
Zainab Bibi ◽  
Anam Fatima ◽  
Rehana Rani ◽  
Ayesha Maqbool ◽  
Samea Khan ◽  
...  

Abstract Background: Plasmodium vivax contributes to over 70% malaria burden in Pakistan, but limited data exists on various aspects including genetic diversity of the parasite as compared to other parts of the world. Since the information about the genetic diversity of P. vivax assists to understand the population dynamics of the parasite, the current study was designed to understand population divergence of Plasmodium vivax in Pakistan using circumsporozoite protein (PvCSP) and merozoite surface protein-1 (PvMSP-1) genes as molecular markers. Methods: PvCSP and PvMSP-1 specific PCR and DNA sequencing were carried out for 150 blood samples collected from Islamabad and Rawalpindi, Pakistan. Genetic diversity and polymorphism was analyzed using ChromasPro, ClustalW, MEGA7, DnaSP v.5 and WebLogo programs. Results: The PCR for PvCSP and PvMSP-1 genes was carried out for 150 P. vivax isolates and resulting the PCR products ranging from 900 to 1100 bp for PvCSP and ~400bp for PvMSP-1 genes respectively. Majority (93%; 141/150) of the P. vivax isolates were of VK210 variant and only 9 isolates were found to be of VK247 variant based on PvCSP gene. Out of the numerous peptide repeat motifs (PRMs) detected, GDRADGQPA (PRM1) and GDRAAGQPA (PRM2) were more extensively dispersed among the P. vivax isolates. Partial sequences (~400bp) at the N-terminal of PvMSP-1 gene depicted high level of diversity.Conclusion: High levels of genetic diversity based on PvCSP and PvMSP-1 genes was observed in the isolated samples from the study area. Parasite typing is essential in predicting pattern of antigenic variations and drug resistance and for effective vaccine designing and development which can further assist in evaluating measures for malaria control at individual and community level. The base-line data presented here warrants future studies to investigate more into the genetic diversity of P. vivax with large sample size from across the country for better understanding of the transmission patterns of vivax malaria.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Kanyanan Kritsiriwuthinan ◽  
Warunee Ngrenngarmlert ◽  
Sakone Sunantaraporn ◽  
Anna Jehmah

Genetic diversity of Plasmodium parasite has significantly related to malaria control and vaccine development. The P. falciparum merozoite surface protein 1 (Pfmsp1) gene is a commonly used molecular marker to differentiate genetic diversity. This study is aimed at developing a nested PCR-Heteroduplex Mobility Assay (nPCR-HMA) for determination of the block 2 of the Pfmsp1 gene. The MAD20 family allele of P. falciparum was used as a control for optimization of the annealing and polyacrylamide gel electrophoresis conditions. In order to evaluate the developed nPCR-HMA, 8 clinical P. falciparum isolates were examined for allelic variants. The results revealed 9 allelic variants. Our study indicated that the successful nPCR-HMA with good precision and accuracy offers a more rapid, efficient, and cheap method for large-scale molecular epidemiological studies as compared to nucleotide sequencing.


Sign in / Sign up

Export Citation Format

Share Document