Aluminosilicate diagenesis in a Tertiary sandstone-mudrock sequence from the central North Sea, UK

Clay Minerals ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 523-536 ◽  
Author(s):  
J. M. Huggett

AbstractMudrocks and sandstones from the Palaeocene of the central North Sea have been studied to assess the petrology, diagenesis and extent of any chemical interaction between the two lithologies. Authigenic and detrital minerals have been distinguished using a variety of electron microscope techniques. Small but significant quantities of authigenic minerals, which would not be detected by conventional petrographic tools, have been detected through the use of high-resolution electron beam techniques. Sandstone mineralogy has been quantified by point counting, and mudrock mineralogy semi-quantified by XRD. The detrital and authigenic mineralogy in the sandstone is almost identical to that found in the mudrock. The principal difference is in the relative proportions. Qualitative mass balance suggests that cross-formational flow has not been significant in either clay or quartz diagenesis.

Author(s):  
T. Kizuka ◽  
N. Tanaka

Various kinds of nanometer scale processings are required to produce advanced materials, for example, nano-structured electric devices. Electron beam processing at nanometer scale using STEM and TEM, such as drilling and line-writing, is recently interested as a most useful method. Details of structural change during the processing should be elucidated at atomic resolution in order to establish the processing. In the present work we have processed lead telluride (PbTe) films with nanometer electron beam in a high-resolution transmission electron microscope and in-situ observed the variation of atomic arrangements during the processing.PbTe of 99.99% was vacuum-deposited on air-cleaved (001) surfaces of sodium chloride at room temperature. Time-resolved high-resolution electron microscopy was carried out at room temperature using a 200-kV electron microscope (JEOL, JEM2010) equipped with a high sensitive TV camera and a video tape recorder. The spatial resolution of thesystem was 0.2 nm at 200 kV and the time resolution was 1/60 s. Electron beam irradiation density was 120 A/cm2 at the processing and the observation.


Author(s):  
M. R. McCartney ◽  
David J. Smith

In addition to providing information about the interaction of ionizing radiation with solids, a knowledge of the changes induced in the specimen by the electron beam is important when interpreting high-resolution electron micrographs of surfaces. Beam-induced modifications to the surfaces of several maximally-valent transition-metal oxides (TMO) have been previously reported. It was found that irradiation at 400keV within a high-resolution electron microscope (HREM) caused TiO2, V2O5, Nb2O5, and WO3 to reduce epitaxially to their respective monoxide phases. Because of their ionicity and relatively deep core levels, these materials should be susceptible to electron-stimulated desorption (ESD) of oxygen due to a radiolytic damage mechanism proposed by Knotek and Feibelman (K-F) involving inter-atomic Auger decay of core holes on the metal ions. Reduction of these oxides to the (metallic) monoxide phases within the HREM is consistent with this mechanism. When these oxides were exposed to the extreme current densities available in a 100keV electron microscope equipped with a field emission gun (FEG) they developed pits at the probe position . Electron energy loss spectroscopy (EELS) studies established that they had suffered mass loss and a reduction in the oxygen/metal ratio. HREM imaging occasionally revealed lattice fringes corresponding to the bare metal in the amorphous contrast of these pits.


Author(s):  
Mihir Parikh

It is well known that the resolution of bio-molecules in a high resolution electron microscope depends not just on the physical resolving power of the instrument, but also on the stability of these molecules under the electron beam. Experimentally, the damage to the bio-molecules is commo ly monitored by the decrease in the intensity of the diffraction pattern, or more quantitatively by the decrease in the peaks of an energy loss spectrum. In the latter case the exposure, EC, to decrease the peak intensity from IO to I’O can be related to the molecular dissociation cross-section, σD, by EC = ℓn(IO /I’O) /ℓD. Qu ntitative data on damage cross-sections are just being reported, However, the microscopist needs to know the explicit dependence of damage on: (1) the molecular properties, (2) the density and characteristics of the molecular film and that of the support film, if any, (3) the temperature of the molecular film and (4) certain characteristics of the electron microscope used


Author(s):  
David Joy ◽  
James Pawley

The scanning electron microscope (SEM) builds up an image by sampling contiguous sub-volumes near the surface of the specimen. A fine electron beam selectively excites each sub-volume and then the intensity of some resulting signal is measured. The spatial resolution of images made using such a process is limited by at least three factors. Two of these determine the size of the interaction volume: the size of the electron probe and the extent to which detectable signal is excited from locations remote from the beam impact point. A third limitation emerges from the fact that the probing beam is composed of a finite number of discrete particles and therefore that the accuracy with which any detectable signal can be measured is limited by Poisson statistics applied to this number (or to the number of events actually detected if this is smaller).


Author(s):  
M. R. McCartney ◽  
J. K. Weiss ◽  
David J. Smith

It is well-known that electron-beam irradiation within the electron microscope can induce a variety of surface reactions. In the particular case of maximally-valent transition-metal oxides (TMO), which are susceptible to electron-stimulated desorption (ESD) of oxygen, it is apparent that the final reduced product depends, amongst other things, upon the ionicity of the original oxide, the energy and current density of the incident electrons, and the residual microscope vacuum. For example, when TMO are irradiated in a high-resolution electron microscope (HREM) at current densities of 5-50 A/cm2, epitaxial layers of the monoxide phase are found. In contrast, when these oxides are exposed to the extreme current density probe of an EM equipped with a field emission gun (FEG), the irradiated area has been reported to develop either holes or regions almost completely depleted of oxygen. ’ In this paper, we describe the responses of three TMO (WO3, V2O5 and TiO2) when irradiated by the focussed probe of a Philips 400ST FEG TEM, also equipped with a Gatan 666 Parallel Electron Energy Loss Spectrometer (P-EELS). The multi-channel analyzer of the spectrometer was modified to take advantage of the extremely rapid acquisition capabilities of the P-EELS to obtain time-resolved spectra of the oxides during the irradiation period. After irradiation, the specimens were immediately removed to a JEM-4000EX HREM for imaging of the damaged regions.


Author(s):  
Patricia M. Wilson ◽  
David C. Martin

Efforts in our laboratory and elsewhere have established the utility of low dose high resolution electron microscopy (HREM) for imaging the microstructure of crystalline and liquid crystalline polymers. In a number of polymer systems, direct imaging of the lattice spacings by HREM has provided information about the size, shape, and relative orientation of ordered domains in these materials. However, because of the extent of disorder typical in many polymer microstructures, and because of the sensitivity of most polymer materials to electron beam damage, there have been few studies where the contrast observed in HREM images has been analyzed in a quantitative fashion.Here, we discuss two instances where quantitative information about HREM images has been used to provide new insight about the organization of crystalline polymers in the solid-state. In the first, we study the distortion of the polymer lattice planes near the core of an edge dislocation and compare these results to theories of dislocations in anisotropic and liquid crystalline solids. In the second, we investigate the variations in HREM contrast near the edge of wedge-shaped samples. The polymer used in this study was the diacetylene DCHD, which is stable to electron beam damage (Jc = 20 C/cm2) and highly crystalline. The instrument used in this work was a JEOL 4000 EX HRTEM with a beam blanidng device. More recently, the 4000 EX has been installed with instrumentation for dynamically recording scattered electron beam currents.


Sign in / Sign up

Export Citation Format

Share Document