C/EBPϵ interacts with retinoblastoma and E2F1 during granulopoiesis

Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 828-835 ◽  
Author(s):  
Sigal Gery ◽  
Adrian F. Gombart ◽  
Yuen K. Fung ◽  
H. Phillip Koeffler

AbstractCCAAT enhancer binding protein epsilon (C/EBPϵ) is a myeloid specific transcription factor that is essential for terminal granulocytic differentiation. Retinoblastoma (Rb) and E2F1 are critical cell cycle regulators that also have been implicated in several differentiation systems. Here, we demonstrate that C/EBPϵ interacts with Rb and E2F1 during granulocytic differentiation in NB4 and U937 human myeloid cells and in 32Dcl3 murine myeloid precursor cells. The interaction between C/EBPϵ and Rb enhances C/EBPϵ-mediated transcription of myeloid specific genes both in reporter assays and endogenously. The C/EBPϵ-E2F1 interaction results in repression of E2F1-mediated transcriptional activity. Finally, overexpression of C/EBPϵ in human myeloid cells leads to down-regulation of c-Myc. We propose that the interactions between C/EBPϵ, a tissue-specific transcription factor, and the broad-spectrum proteins, Rb and E2F1, are important in C/EBPϵ-induced terminal granulocytic differentiation.

1996 ◽  
Vol 16 (6) ◽  
pp. 2647-2655 ◽  
Author(s):  
R F Siegmund ◽  
K A Nasmyth

At a point in late G1 termed Start, yeast cells enter S phase, duplicate their spindle pole bodies, and form buds. These events require activation of Cdc28 kinase by G1 cyclins. Swi4 associates with Swi6 to form the SCB-binding factor complex which activates G1 cyclin genes CLN1 and CLN2 in late G1. In G2 and M phases, the transcriptional activity of SCB-binding factor is repressed by the mitotic Clb2/Cdc28 kinase. Mbp1, a transcription factor related to Swi4, forms the MCB-binding factor complex with Swi6, which activates DNA synthesis genes and S-phase cyclin genes CLB5 and CLB6 in late G1. Clb2/Cdc28 kinase is not required for the repression of MCB-binding factor transcriptional activity in G2 and M phase. We show here that the Swi4 carboxy terminus is sufficient for interaction with Swi6 in vitro. A carboxy-terminal domain of Swi6 is required and sufficient for interaction with Swi4. The carboxy terminus of Mbp1 is sufficient for interaction with Swi6, and the carboxy terminus of Swi6 is required for interaction with Mbp1. By coimmunoprecipitation, we show that Swi4 but not Mbp1 interacts with Clb2/Cdc28 kinase in vivo during the G2 and M phases of the cell cycle. We demonstrate that the ankyrin repeats of Swi4 mediate the interaction with Clb2/Cdc28 kinase. The ankyrin repeats constitute a domain by which a cell cycle-specific transcription factor can interact with cyclin-dependent kinase complexes, thus enabling it to link its transcriptional activity to cell cycle progression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kalyan Mahapatra ◽  
Sujit Roy

AbstractAs like in mammalian system, the DNA damage responsive cell cycle checkpoint functions play crucial role for maintenance of genome stability in plants through repairing of damages in DNA and induction of programmed cell death or endoreduplication by extensive regulation of progression of cell cycle. ATM and ATR (ATAXIA-TELANGIECTASIA-MUTATED and -RAD3-RELATED) function as sensor kinases and play key role in the transmission of DNA damage signals to the downstream components of cell cycle regulatory network. The plant-specific NAC domain family transcription factor SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) plays crucial role in transducing signals from both ATM and ATR in presence of double strand breaks (DSBs) in the genome and found to play crucial role in the regulation of key genes involved in cell cycle progression, DNA damage repair, endoreduplication and programmed cell death. Here we report that Arabidopsis exposed to high salinity shows generation of oxidative stress induced DSBs along with the concomitant induction of endoreduplication, displaying increased cell size and DNA ploidy level without any change in chromosome number. These responses were significantly prominent in SOG1 overexpression line than wild-type Arabidopsis, while sog1 mutant lines showed much compromised induction of endoreduplication under salinity stress. We have found that both ATM-SOG1 and ATR-SOG1 pathways are involved in the salinity mediated induction of endoreduplication. SOG1was found to promote G2-M phase arrest in Arabidopsis under salinity stress by downregulating the expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1, and CYCB1;1, while upregulating the expression of WEE1 kinase, CCS52A and E2Fa, which act as important regulators for induction of endoreduplication. Our results suggest that Arabidopsis undergoes endoreduplicative cycle in response to salinity induced DSBs, showcasing an adaptive response in plants under salinity stress.


1999 ◽  
Vol 19 (3) ◽  
pp. 2400-2407 ◽  
Author(s):  
Rong Yang ◽  
Carsten Müller ◽  
Vong Huynh ◽  
Yuen K. Fung ◽  
Amy S. Yee ◽  
...  

ABSTRACT Human cyclin A1, a newly discovered cyclin, is expressed in testis and is thought to function in the meiotic cell cycle. Here, we show that the expression of human cyclin A1 and cyclin A1-associated kinase activities was regulated during the mitotic cell cycle. In the osteosarcoma cell line MG63, cyclin A1 mRNA and protein were present at very low levels in cells at the G0 phase. They increased during the progression of the cell cycle and reached the highest levels in the S and G2/M phases. Furthermore, the cyclin A1-associated histone H1 kinase activity peaked at the G2/M phase. We report that cyclin A1 could bind to important cell cycle regulators: the Rb family of proteins, the transcription factor E2F-1, and the p21 family of proteins. The in vitro interaction of cyclin A1 with E2F-1 was greatly enhanced when cyclin A1 was complexed with CDK2. Associations of cyclin A1 with Rb and E2F-1 were observed in vivo in several cell lines. When cyclin A1 was coexpressed with CDK2 in sf9 insect cells, the CDK2-cyclin A1 complex had kinase activities for histone H1, E2F-1, and the Rb family of proteins. Our results suggest that the Rb family of proteins and E2F-1 may be important targets for phosphorylation by the cyclin A1-associated kinase. Cyclin A1 may function in the mitotic cell cycle in certain cells.


2002 ◽  
Vol 22 (11) ◽  
pp. 3663-3673 ◽  
Author(s):  
Xiaolin Li ◽  
Donald P. McDonnell

ABSTRACT The B-Myb transcription factor has been implicated in coordinating the expression of genes involved in cell cycle regulation. Although it is expressed in a ubiquitous manner, its transcriptional activity is repressed until the G1-S phase of the cell cycle by an unknown mechanism. In this study we used biochemical and cell-based assays to demonstrate that the nuclear receptor corepressors N-CoR and SMRT interact with B-Myb. The significance of these B-Myb-corepressor interactions was confirmed by the finding that B-Myb mutants, which were unable to bind N-CoR, exhibited constitutive transcriptional activity. It has been shown previously that phosphorylation of B-Myb by cdk2/cyclin A enhances its transcriptional activity. We have now determined that phosphorylation by cdk2/cyclin A blocks the interaction between B-Myb and N-CoR and that mutation of the corepressor binding site within B-Myb bypasses the requirement for this phosphorylation event. Cumulatively, these findings suggest that the nuclear corepressors N-CoR and SMRT serve a previously unappreciated role as regulators of B-Myb transcriptional activity.


2000 ◽  
Vol 11 (3) ◽  
pp. 915-927 ◽  
Author(s):  
Ariella Meimoun ◽  
Tsvi Holtzman ◽  
Ziva Weissman ◽  
Helen J. McBride ◽  
David J. Stillman ◽  
...  

Gcn4, a yeast transcriptional activator that promotes the expression of amino acid and purine biosynthesis genes, is rapidly degraded in rich medium. Here we report that SCFCDC4, a recently characterized protein complex that acts in conjunction with the ubiquitin-conjugating enzyme Cdc34 to degrade cell cycle regulators, is also necessary for the degradation of the transcription factor Gcn4. Degradation of Gcn4 occurs throughout the cell cycle, whereas degradation of the known cell cycle substrates of Cdc34/SCFCDC4 is cell cycle regulated. Gcn4 ubiquitination and degradation are regulated by starvation for amino acids, whereas the degradation of the cell cycle substrates of Cdc34/SCFCDC4 is unaffected by starvation. We further show that unlike the cell cycle substrates of Cdc34/SCFCDC4, which require phosphorylation by the kinase Cdc28, Gcn4 degradation requires the kinase Pho85. We identify the critical target site of Pho85 on Gcn4; a mutation of this site stabilizes the protein. A specific Pho85-Pcl complex that is able to phosphorylate Gcn4 on that site is inactive under conditions under which Gcn4 is stable. Thus, Cdc34/SCFCDC4 activity is constitutive, and regulation of the stability of its various substrates occurs at the level of their phosphorylation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 776-776
Author(s):  
Zhongfa Yang ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates transcription of key myeloid genes, including CD18 (beta2 leukocyte integrin), neutrophil elastase, lysozyme, and other key mediators of the inflammatory response; it is also known to regulate important cell cycle control genes. GABP consists of two distinct and unrelated proteins that, together, form a functional transcription factor complex. GABPalpha (GABPa) is an ets protein that binds to DNA; it forms a tetrameric complex by recruiting its partner, GABPbeta (GABPb), which contains the transactivation domain. GABPa is a single copy gene in both the human and murine genomes and it is the only protein that can recruit GABPb to DNA. We cloned GABPa from a murine genomic BAC library and prepared a targeting vector in which exon 9 (which encodes the GABPa ets domain) was flanked by loxP (floxed) recombination sites. The targeting construct was electroporated into embryonic stem cells, homologous recombinants were implanted into pseudopregnant mice, heterozygous floxed GABPa mice were identified, and intercrossing yielded expected Mendelian ratios of wild type, heterozygous, and homozygous floxed GABPa mice. Breeding of heterozygous floxed GABPa mice to CMV-Cre mice (which express Cre recombinase in all tissues) yielded expected numbers of hemizygous mice (only one intact GABPa allele), but no nullizygous (GABPa−/−) mice among 64 pups; we conclude that homozygous deletion of GABPa causes an embryonic lethal defect. To determine the effect of GABPa deletion on myeloid cell development, we bred heterozygous and homozygous floxed mice to LysMCre mice, which express Cre only in myeloid cells. These mice had a normal complement of myeloid cells but, unexpectedly, PCR indicated that their Gr1+ myeloid cells retained an intact (undeleted) floxed GABPa allele. We detected similar numbers of in vitro myeloid colonies from bone marrow of wild type, heterozygous floxed, and homozygous floxed progeny of LysMCre matings. However, PCR of twenty individual in vitro colonies from homozygous floxed mice indicated that they all retained an intact floxed allele. Breeding of floxed GABPa/LysMCre mice with hemizygous mice indicated that retention of a floxed allele was not due to incomplete deletion by LysMCre; rather, it appears that only myeloid cells that retain an intact GABPa allele can survive to mature in vitro or in vivo. We prepared murine embryonic fibroblasts from homozygous floxed mice and efficiently deleted GABPa in vitro. We found striking abnormalities in proliferation and G1/S phase arrest. We used quantitative RT-PCR to identify mechanisms that account for the altered growth of GABPa null cells. We found dramatically reduced expression of known GABP target genes that regulate DNA synthesis and cell cycle that appear to account for the proliferative defect. We conclude that GABPa is required for growth and maturation of myeloid cells and we identified downstream targets that may account for their failure to proliferate and mature in vitro and in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4214-4214
Author(s):  
Richard Dahl ◽  
Kristin S. Owens

Abstract Gfi-1 −/− mice generate abnormal immature myeloid cells exhibiting characteristics of both monocytes and granulocytes. One of Gfi-1’s critical functions is to downregulate monocyte specific genes in order for granulocytes to develop properly. Since the transcription factors C/EBP alpha and C/EBP epsilon are needed for granulocyte development we hypothesized that these factors may regulate Gfi-1 expression. The Gfi-1 promoter contains several putative C/EBP binding sites and we show by electrophoretic mobility shift and chromatin immunoprecipitation that C/EBP family members can bind to some of these sites. However we were unable to see activation of the Gfi-1 promoter by C/EBP proteins in transient transfection reporter assays. Other groups have shown that C/EBP proteins can synergize with the transcription factor c-myb. We observed that the Gfi-1 promoter contains sites for the hematopoietic transcription factor c-myb. Sevral of these c-myb binding sites are adjacent to C/EBP binding sites. In reporter assays in non-hematopoietic cells c-myb activated the Gfi-1 promoter by itself and this activity was enhanced when we included either C/EBP alpha or epsilon in the transfection. Our data suggests that C/EBP proteins and c-myb regulate the transcription of Gfi-1 in myeloid cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3577-3577
Author(s):  
Matthew Silver ◽  
Nirmalee Abayasekara ◽  
Dylan Perry ◽  
Hong Sun ◽  
Nancy Berliner ◽  
...  

Abstract CCAAT enhancer binding protein alpha (C/EBPα) is the founding member of a family of basic region/leucine zipper (bzip) transcription factors and has been shown to be a master regulator of granulopoiesis It is expressed at high levels throughout myeloid differentiation and has been shown to bind to the promoters of multiple myeloid- specific gene promoters at different stages of myeloid maturation. Profound hematopoietic abnormalities have been reported for mice nullizygous for including a selective early block in the differentiation of C/EBPα, granulocytes. Mutations in C/EBPα have been demonstrated in a subset of patients with AML presenting with a normal karyotype. These mutations can result in the expression of a 30kD dominant negative C/EBPα isoform which contributes to loss of C/EBPα function. We have sought to understand the molecular basis for this observation. We and others have demonstrated that C/EBPα is post-translationally modified by small ubiquitin-related modifier (SUMO) at a lysine residue (K159) that lies within a region of the C/EBPα protein that can negatively affect transcriptional activity. We have demonstrated that the levels of sumoylated p42C/EBPα decrease upon normal neutrophil maturation and that transactivation of the myeloid-specific lactoferrin (LF) promoter reporter is significantly enhanced by a p42 sumoylation mutant of C/EBPα (K159A). Additionally, in oligonucleotide pull down assays, we show that sumoylated p42C/EBPα binds to the C/EBP site in the LF promoter in immature myeloid cells (which do not express LF) while loss binding and LF of sumoylation correlates with loss of p42C/EBPα expression in more mature cells. Based on these observations we is associated with the negative conclude that sumoylated p42C/EBPα regulation of LF in early myeloid cells. We further demonstrate that sumoylated p42C/EBPα remains bound to the LF promoter following ATRA induction of the leukemic NB4 cells, which do not express LF despite induction of morphologic maturation. Based on these observations we conclude that during normal myeloid differentiation, sumoylated p42C/EBPα is associated with the negative regulation of LF in early myeloid cells, and that LF expression upon maturation is associated with loss of binding of sumoylated p42 C/EBPα In leukemic cells induced toward mature neutrophils, sumoylated p42C/EBPα remains bound to the LF promoter, contributing to the lack of expression of LF in these cells. We show in addition, that p30 C/EBPα can also be sumoylated. In transactivation assays, however, sumoylated p42C/EBPα suppresses LF promoter activity more efficiently than p30C/EBPα in 293 cells. In order to identify differential protein binding partners of p30 and p42C/EBPα that could account for the differential transcriptional activity of the two isoforms, we have used a one step purification method that allows isolation of biotinylated C/EBPα p30 and p42- containing complexes using magnetic-streptavidin beads. The K562 myelomonocytic cell line stably expressing a biotin ligase (BirA) plasmid was transfected with p30C/EBPα or p42C/EBPα each containing a 23 amino acid tag at the N-terminus that allows for in vivo biotinylation. Proteins complexed with the two C/EBP isofoms have been isolated and are currently being identified by LC- MS MS analysis. Their differential association with the two isofoms of C/EBPα will be confimed by coimmunoprecipitation assays in normal myeloid and in leukemic cells. The identification of differentially bound proteins to p30 and p42 C/EBPα may identify molecular targets for future drug development.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1284-1284
Author(s):  
Zhongfa Yang ◽  
Karen Drumea ◽  
James Cormier ◽  
Junling Wang ◽  
Xuejun Zhu ◽  
...  

Abstract Abstract 1284 GABP is an ets transcription factor that regulates genes which are required for normal hematopoietic development. In myeloid cells, GABP is an essential component of a retinoic acid-inducible enhanceosome that mediates granulocytic gene expression and, in lymphoid cells, GABP regulates expression of IL7-R and the essential transcription factor, Pax5. GABP is a tetrameric complex that includes GABPa, which binds DNA via its ets domain, and GABPb, which contains the transcription activation domain. Genetic disruption of mouse Gabpa caused early embryonic lethality. We created mice in which loxP recombination sites flank exons that encode the Gabpa ets domain, and bred them to mice that bear the Mx1Cre recombinase; injection with pIC induced Cre expression and efficiently deleted Gabpa in hematopoietic cells. One half of the Gabpa knock-out (KO) mice died within two weeks of pIC injection in association with widespread visceral hemorrhage. Gabpa KO mice exhibited a rapid loss of mature granulocytes, and residual myeloid cells exhibited myelodysplasia due, in part, to regulation by Gabp of the transcriptional repressor, Gfi-1. We used bone marrow transplantation to demonstrate that the defect in Gabpa null myeloid cells is cell intrinsic. Although hematopoietic progenitor cells in Gabpa KO bone marrow were decreased more than 100-fold compared to pIC treated control mice, there was not a statistically significant difference in the numbers of Lin−c-kit+Sca-1− hematopoietic stem cells (HSCs) between KO and control mice. Genetic disruption of Gfi-1 disruption in HSCs caused increased cell cycle activity – an effect that is diametrically opposite of the effect of Gabpa KO; this suggests that the effect of Gabpa on HSCs is not due to its control of Gfi-1. In contrast, Gabpa KO HSCs exhibited a marked decrease in cell cycle activity, but did not demonstrate increased apoptosis. The defects in S phase entry of Gabpa null HSCs are reminiscent of the cell cycle defects in Gabpa null fibroblasts, in which expression of Skp2 E3 ubiquitin ligase, which controls degradation of the cyclin dependent kinase inhibitors (CDKIs) p21 and p27, was markedly reduced following Gabpa disruption. We showed that Gabpa KO cells express reduced levels of Skp2. We propose that GABP controls self-renewal and proliferation of mouse bone marrow stem and progenitor cells, in part, through its regulation of Skp2. Thus, Gabpa is a key regulator of myeloid differentiation through its control of Gfi-1, but it is required for cell cycle activity of HSCs, by a distinct effect that may be due to its control of Skp2 and CDKIs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document