Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia

Blood ◽  
2013 ◽  
Vol 121 (12) ◽  
pp. 2213-2223 ◽  
Author(s):  
Eric Jourdan ◽  
Nicolas Boissel ◽  
Sylvie Chevret ◽  
Eric Delabesse ◽  
Aline Renneville ◽  
...  

Key Points In adult patients with core binding factor AML, intensified induction is not associated with a better outcome in the context of intensive postremission therapy. Minimal residual disease, rather than KIT or FLT3 gene mutations, should be used to identify core binding factor AML patients at higher risk of relapse.

2017 ◽  
Vol 92 (9) ◽  
pp. 845-850 ◽  
Author(s):  
Brittany Knick Ragon ◽  
Naval Daver ◽  
Guillermo Garcia-Manero ◽  
Farhad Ravandi ◽  
Jorge Cortes ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1356-1356
Author(s):  
Xiaoxia Hu ◽  
Libing Wang ◽  
Lei Gao ◽  
Sheng Xu ◽  
Shenglan Gong ◽  
...  

Abstract Acute myeloid leukemia (AML) is generally regarded as a stem cell disease, known as leukemic initiating cells (LIC), which initiate the disease and contribute to relapses. Although the phenotype of these cells remains unclear in most patients, they are enriched within CD34+CD38- compartment. In core binding factor (CBF) AML, the cytogenetic abnormablities are also existed in LIC. The aim of this study was to determine the prognostic power of minimal residual disease measured by fluorescence in situ hybridization (FISH) in flow sorted CD34+CD38- cells (FISH+CD34+CD38- population) at different period during the therapy. Thirty-six patients under 65 years of age with de novo CBF AML and treated with CHAML 2010 protocol were retrospectively included in this study. FISH efficiently identified the LICs (FISH+CD34+CD38-) in the CD34+CD38- population. The last follow-up was March 31, 2013, and the median follow-up was 336 days (range: 74-814 days). 33 patients with complete remission (CR) were eligible for the study, and 23 patients (23/33, 69.7%) with t (8;21) or AML1/ETO, and the remaining (10/33, 30.3%) with inv(16)/t(16;16) or CBFβ/MYH11. Flow-cytometry based FISH (F-FISH) procedure was performed at diagnosis, before every cycle of consolidation therapy, and every 3 months during follow-up. The FISH+ percentage at diagnosis constituting an average of 2.1% (range: 0.01%-27.5%) of the blast cells and 64.6% (range: 14%-87.8%) of the CD34+CD38- cells. Before the consolidation, FISH+CD34+CD38- population was detected in 13/33 (39.4%) patients. At this checkpoint, we have found the existence of FISH+CD34+CD38- population had prognostic value for the end points relapse free survival (RFS, 12% versus 68%, P=.008), and retained prognostic significance for RFS in multivariate analysis. Furthermore, the detection of FISH+CD34+CD38- before consolidation was found to be significantly associated with decreased OS. (11% versus 75%, P=.0005) Minimal residual disease (MRD) detected with F-FISH had a prognostic value at an earlier checkpoint when compared with flow cytometry and RT-PCR. Meanwhile, the concordance of flow cytomety, RT-PCR and F-FISH was investigated in the same patient cohort. 14 (70%) of 20 samples with detectable fusion transcripts by PCR did not have detectable leukemic cells by F-FISH. Therefore, the concordance for PCR and F-FISH was 63.7%. The concordance of FC and F-FISH was 64.3%: in 40 samples MRD was detected by both methods and in 61 samples MRD was ruled out by a negative result with the tests. With further analysis, the discrepancies among MRD detected with different MRD monitoring approaches before consolidation and after the first consolidation therapy contribute to 84% of the disconcordance. In summary, the detection of FISH+CD34+CD38- cells before consolidation therapy was significantly correlated with long-term survival in de novo CBF AML patients. F-FISH might be easily adopted as MRD monitor approach in clinical practice to identify patients at risk of treatment failure from the early stage during therapy. Disclosures: No relevant conflicts of interest to declare.


Chemotherapy ◽  
2020 ◽  
pp. 1-5
Author(s):  
Orhan Kemal Yucel ◽  
Mustafa Serkan Alemdar ◽  
Unal Atas ◽  
Levent Undar

Although core-binding factor AML (CBF-AML) has a favorable outcome, disease relapses occur in up to 35% of patients. Minimal residual disease (MRD) monitoring is one of the important tools to enable us to identify patients at high risk of relapse. Real-time quantitative PCR allows MRD to be measured with high sensitivity in CBF-AML. If the patient with CBF-AML is in complete morphologic remission but MRD positive at the end of treatment, what to do for those is still uncertain. Preemptive intervention approaches such as allogeneic hematopoietic stem cell transplantation or intensive chemotherapy could be an option or another strategy might be just follow-up until overt relapse developed. Although using hypomethylating agents as a maintenance therapy has not been widely explored, here, we report a case with CBF-AML who was still positive for MRD after induction/consolidation therapies and whose MRD was eradicated by azacitidine maintenance.


Blood ◽  
2012 ◽  
Vol 120 (14) ◽  
pp. 2826-2835 ◽  
Author(s):  
John A. Liu Yin ◽  
Michelle A. O'Brien ◽  
Robert K. Hills ◽  
Sarah B. Daly ◽  
Keith Wheatley ◽  
...  

AbstractThe clinical value of serial minimal residual disease (MRD) monitoring in core binding factor (CBF) acute myeloid leukemia (AML) by quantitative RT-PCR was prospectively assessed in 278 patients [163 with t(8;21) and 115 with inv(16)] entered in the United Kingdom MRC AML 15 trial. CBF transcripts were normalized to 105ABL copies. At remission, after course 1 induction chemotherapy, a > 3 log reduction in RUNX1-RUNX1T1 transcripts in BM in t(8;21) patients and a > 10 CBFB-MYH11 copy number in peripheral blood (PB) in inv(16) patients were the most useful prognostic variables for relapse risk on multivariate analysis. MRD levels after consolidation (course 3) were also informative. During follow-up, cut-off MRD thresholds in BM and PB associated with a 100% relapse rate were identified: for t(8;21) patients BM > 500 copies, PB > 100 copies; for inv(16) patients, BM > 50 copies and PB > 10 copies. Rising MRD levels on serial monitoring accurately predicted hematologic relapse. During follow-up, PB sampling was equally informative as BM for MRD detection. We conclude that MRD monitoring by quantitative RT-PCR at specific time points in CBF AML allows identification of patients at high risk of relapse and could now be incorporated in clinical trials to evaluate the role of risk directed/preemptive therapy.


Sign in / Sign up

Export Citation Format

Share Document