scholarly journals Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers

Blood ◽  
2020 ◽  
Vol 136 (6) ◽  
pp. 698-714 ◽  
Author(s):  
Alexandre Fagnan ◽  
Frederik Otzen Bagger ◽  
Maria-Riera Piqué-Borràs ◽  
Cathy Ignacimouttou ◽  
Alexis Caulier ◽  
...  

Abstract Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.

2018 ◽  
Vol 19 (10) ◽  
pp. 3272 ◽  
Author(s):  
Manel Benhassine ◽  
Sylvain Guérin

Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B− but not in HTR23B+ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 463-463 ◽  
Author(s):  
Ulrich Steidl ◽  
Frank Rosenbauer ◽  
Roel G.W Verhaak ◽  
Xuesong Gu ◽  
Hasan H. Otu ◽  
...  

Abstract Knockdown of the expression of the myeloid master regulator PU.1 leads to the development of an immature acute myeloid leukemia (AML) in mice. Recent reports suggest that functional inactivation of PU.1 might also play a role in human AML. However, the molecular mechanisms underlying PU.1-mediated malignant transformation are unknown. We examined leukemic PU.1 knockdown mice and found a 3-fold expansion of lin-, c-kit+, Sca1+ (KLS) hematopoietic stem cells (HSC) as compared to wildtype controls, which was not observed during the preleukemic phase. When we transplanted double-sorted leukemic KLS-HSC into NOD-SCID mice the recipients developed AML after 9–12 weeks indicating that the leukemic stem cells derive from the HSC compartment. This finding prompted us to examine the transcriptome of PU.1 knockdown preleukemic HSC to identify early transcriptional changes underlying their malignant transformation. After lineage-depletion and FACS sorting of preleukemic KLS-HSC we performed linear amplification of RNA by 2 cycles of RT-IVT and hybridized the cRNA with Affymetrix Mouse Genome 430 2.0 arrays. Principal component analysis as well as hierarchical cluster analysis clearly distinguished PU.1 knockdown and wildtype HSC. Several in-vitro targets of PU.1 such as c-Fes, BTK, TFEC, CSF2R, and Ebi3 were downregulated demonstrating that those are also affected in HSC in vivo. Differential expression of 16 genes was corroborated by qRT-PCR. Strikingly, several Jun family transcription factors including c-Jun and JunB were downregulated. Retroviral restoration of c-Jun expression in bone marrow cells of preleukemic mice rescued the PU.1-initiated myelomonocytic differentiation block in this early phase. To target cells in the leukemic stage we applied lentiviral vectors expressing c-Jun or JunB. While c-Jun did not affect leukemic proliferation, lentiviral restoration of JunB led to an 80% reduction of clonogenic growth and a loss of leukemic self-renewal capacity in serial replating assays. Expression analysis of 285 patients with AML confirmed the correlation between PU.1 and JunB downregulation and suggests its relevance in human disease. These results delineate a transcriptional pattern that precedes leukemic transformation in PU.1 knockdown HSC and demonstrate that downregulation of c-Jun and JunB contribute to the development of PU.1-induced AML by blocking differentiation (c-Jun) and increasing self-renewal (JunB). Therefore, examination of disturbed gene expression in preleukemic HSC can identify genes whose dysregulation is essential for leukemic stem cell function and are potential targets for therapeutic interventions.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1272-1272
Author(s):  
Akiko Kimura ◽  
Michael A. Rieger ◽  
WeiPing Chen ◽  
James M. Simmon ◽  
Gertraud Robinson ◽  
...  

Abstract Neutrophils, one kind of granulocytes, are the most abundant type of white blood cells in human peripheral blood and form an integral part of the immune system. In addition, the majority of acute myelogeneous leukemia (AML) cells are from the granulocyte lineage. Granulocyte-colony stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) control migration, proliferation and survival of granulocytes. G-CSF and GM-CSF activate the transcription factors STAT5A/B (STAT5), which are essential for the development of T and B cells and the erythroid lineage. However, it is not clear to what extent G-CSF or GM-CSF signaling through STAT5 controls the differentiation, proliferation, survival in granulocyte lineage. STAT5 is not only essential for normal development and its constitutive activation has been linked to AML patients with Flt3 mutations. The objective of this study was to explore the contribution of STAT5 in G-CSF- and GM-CSF-induced granulopoiesis and to elucidate the underlying molecular mechanisms. Towards this goal, the Stat5a/b genes were deleted in mouse hematopoietic stem cells in vivo using Cre-loxP-mediated recombination (mutant mice). Injection of 5-FU resulted in a cytokine storm, which in controls, but not in mutant mice, led to a 10-fold elevation of neutrophils. Strikingly, the distribution of myeloid progenitor populations in bone marrow was not altered in STAT5-null animals in homeostasis. Colony assays were performed to address which cytokine controls granulopoiesis from these progenitors. While common multipotent progenitor cells (CMPs) and granulocyte macrophage progenitor cells (GMPs) from control mice formed large colonies in the presence of GM-CSF, mutant cells responded poorly. No difference between control and mutant colonies was observed in the presence of G-CSF. To investigate GM-CSF-mediated survival, apoptosis-assays were performed with peritoneal neutrophils. Greatly elevated apoptosis was observed with STAT5-null neutrophils. To further dissect the contribution of apoptosis and/or proliferation in the observed defects, long-term time-lapse imaging and single cell tracking was applied. Control and STAT5-null GMPs were cultured with GM-CSF and individual cells and all their progeny were continuously observed for 5 generations. Despite an equal number of initial GMPs responding to GM-CSF, the generation time of STAT5-null GMP-derived progeny was significantly prolonged in each generation and the number of cell death events increased dramatically from generation to generation. Therefore, GM-CSF-mediated STAT5 signaling is necessary to generate high numbers of granulocytic cells from GMPs by providing pro-survival and pro-proliferation signals. To identify GM-CSF-mediated and STAT5-dependent genetic cascades that control proliferation and survival of the granulocyte lineage, we performed gene expression profiling and ChIP-seq of control and STAT5-null CMPs, GMPs and neutrophils. STAT5 target genes specific to CMPs, GMPs and neutrophils were identified and their contribution to normal granulopoiesis is currently being investigated.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 737-737
Author(s):  
Wonil Kim ◽  
Kimberly D Klarmann ◽  
Jonathan R Keller

Abstract The survival, self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPC) are tightly regulated by extrinsic signals, and intrinsically by transcription factors and their regulatory networks. The molecular and cellular mechanisms, which regulate the complex process of hematopoiesis, depend upon the correct expression of transcription factors and their regulators. One such family of regulators is the inhibitor of DNA binding/differentiation (Id), which is helix-loop-helix proteins that function by acting as dominant negative regulators of transcription factors such as E proteins, ETS, Pax, and retinoblastoma proteins. Expression of Id2, one of the Id family proteins, is regulated by growth factor independence-1 (Gfi-1) encoding a transcriptional repressor. Gfi-1 is required for the development of multiple cell lineages including HSPC and ultimately differentiated blood cells. Although genes have been identified to mediate hematopoietic defects observed in Gfi-1 knockout (Gfi-1 KO) mice including the maturational and developmental defects in granulocyte (CSF-1, RasGRP1, and PU.1) and B cell (PU.1 or Id2), and myeloid hyperplasia (Id2 or HoxA9), Gfi-1-target genes that mediate the defects in radioprotection, maintenance of HSC, and erythroid hyperplasia in Gfi-1 KO mice are unknown. Since Id2 expression is elevated in HSPC of Gfi-1 KO mice and Id2 promotes cell proliferation, we hypothesized that lowering Id2 expression could rescue the HSPC defects in the Gfi-1 KO mice. By transplanting Gfi-1 KO mouse bone marrow cells (BMC) into lethally-irradiated recipient mice, we observed that short-term reconstituting cell (STRC) activity in Gfi-1 KO BMC is rescued by transplanting Gfi-1 KO; Id2 Het (heterozygosity at the Id2 locus) BMC, while the long-term reconstitution defect of HSC was not. Interestingly, lineage- Sca-1- c-Kithi HPC, which enriched for megakaryocyte-erythroid progenitor (MEP) as one of the STRC, were fully restored in mice transplanted with Gfi-1 KO; Id2 Het BMC, in contrast to lack of the HPC in Gfi-1 KO BM-transplanted mice. The restoration of donor c-Kithi HPC was directly correlated with increased red blood cell (RBC) levels in recipient mice, which was produced after donor BM engraftment. Furthermore, we identified that reduced Id2 levels restore erythroid cell development by rescuing short-term hematopoietic stem cell, common myeloid progenitor and MEP in the Gfi-1 KO mice. In addition, burst forming unit-erythroid (BFU-E) colony assay showed that hemoglobinized BFU-E development was restored in Gfi-1 KO BM and spleen by lowering Id2 levels. Unlike Id2 reduction, reducing other Id family (Id1 or Id3) levels in Gfi-1 KO mice does not rescue the impaired development of erythroid and other hematopoietic lineages including myeloid, T and B cells. Abnormal expansion of CD71+ Ter119-/low erythroid progenitor cells was rescued in Gfi-1 KO; Id2 Het BMC compared to those in Gfi-1 KO mice. Thus, we hypothesized that erythroid development was blocked at the early stage of erythropoiesis due to the ectopic expression of Id2 in Gfi-1 KO mice. Using Id2 promoter-driven YFP reporter mice, we found that Id2 is highly expressed in the CD71+ Ter119-/low erythroid progenitors, and decreases as the cells mature to pro-erythroblasts and erythroblasts, suggesting that repression of Id2 expression is required for proper erythroid differentiation in the later stages. The dramatic changes of Id2 expression during erythroid development support our findings that the overexpression of Id2 in the absence of Gfi-1-mediated transcriptional repression causes impaired erythropoiesis at the early stage. To identify the molecular mechanisms that could account for how reduced Id2 levels rescue erythropoiesis in Gfi-1 KO mice, we compared the expression of genes and proteins in Gfi-1 KO; Id2 Het and Gfi-1 KO BMC. Using microarray, qRT-PCR and western blot, we discovered that reduction of Id2 expression in Gfi-1 KO BMC results in increased expression of Gata1, EKlf, and EpoR genes, which are required for erythropoiesis. However, the expression levels of cell cycle regulators were not altered by lowering Id2 expression in Gfi-1 KO mice. These data suggest a novel molecular mechanism in which Gfi-1 modulates erythropoiesis by repressing the expression of Id2 that reduce the levels of Id2 protein, binding to E2A and inhibiting the formation of E2A/Scl transcription enhancer complex. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2189-2189
Author(s):  
Mark C Wilkes ◽  
Aya Shibuya ◽  
Vanessa M Scanlon ◽  
Hee-Don Chae ◽  
Anupama Narla ◽  
...  

Abstract Diamond Blackfan Anemia (DBA) is a rare genetic disease predominantly caused by mutations carried within one of at least 20 ribosomal genes. DBA is characterized by red blood cell aplasia and normal myeloid and megakaryocyte progenitors, indicating that early uncommitted progenitors are relatively unaffected by the mutations. In DBA, the formation of BFU-E colonies and subsequent erythroblasts are severely restricted and indicate a defect in one of the earliest stages of erythroid expansion. To identify critical molecular mechanisms that may regulate early erythropoiesis, we used shRNAs against the ribosomal protein RPS19 (the most commonly mutated gene in DBA) in cord blood derived CD34+ hematopoietic stem and progenitor cells (HSPCs) and performed bulk RNA-seq. After 3 days in an erythroid culture media, the transcriptomes in CD71+ erythroid progenitors were examined. We found that the special AT binding protein 1 (SATB1) was downregulated in RPS19-insufficient HSPCs compared to healthy cord blood HSPCs. SATB1 is modestly expressed in hematopoietic stem cells but is induced during lymphoid expansion and has been previously reported to suppress myeloid/erythroid progenitor (MEP) expansion. Our results showed that maintaining SATB1 expression is required for optimal expansion of MEP progenitors and that the premature loss of SATB1 in DBA contributes to the anemia phenotype. SATB1 binds to 3 specific regions upstream of the 5'UTR of the HSP70 genes and induces the formation of 2 chromatin loops. An enhancer element associates with the proximal promoters of the two HSP70 genes and facilitates the induction of HSP70. In DBA, HSP70 is not induced and contributes to DBA pathogenesis. HSPA1A is induced 4.3-fold while HSPA1B is induced 3.1-fold. Increased expression of the master erythroid transcription factor GATA1 during erythropoiesis occurs in two phases. The first induction precedes a more dramatic induction that accompanies later stages of erythroid differentiation. The absence of SATB1 or HSP70 reduced the earlier GATA1 induction that accompany MEP expansion by 46.1% and 49.3% respectively. The number of MEPs in SATB1 knockdown HSPCs was reduced, resulting in a 24.5% reduction in CD235+ erythroid and 20.8% reduction in CD41+ megakaryocytes. While SATB1-independent effects of RPS19-insufficiency contribute more significantly to erythroid defects in DBA, we have uncovered that SATB1 contributes to regulation of the earliest stages of erythropoiesis by facilitating the induction of HSP70 and subsequent stabilization of an early induction of GATA1. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Seda S Tolu ◽  
Kai Wang ◽  
Zi Yan ◽  
Shouping Zhang ◽  
Karl Roberts ◽  
...  

The consequences of Sickle Cell Disease (SCD), including ongoing hematopoietic stress and hemolysis, vascular damage and chronic therapies , such as blood transfusions and Hydroxyurea on hematopoietic stem and progenitor cell (HSPC) have not been characterized. We have quantified the frequencies of nine HSPC populations by flow cytometry in the peripheral blood of pediatric and adult patients stratified by treatment and controls. We observed broad differences between SCD patients and healthy controls. SCD is associated with 10 to 20-fold increase in CD34dim cells, and two to five-fold more CD34bright cells, a depletion in Megakaryocyte-Erythroid Progenitors and an increase in hematopoietic stem cells, when compared to controls. SCD is also associated with abnormal expression of CD235a and by very high levels of expression of the CD49f antigen. These findings were present to varying degrees in all patients, whether or not they were naïve or on chronic therapy. HU treatment tended to normalizes many of these parameters. Chronic stress erythropoiesis, inflammation caused by SCD and hydroxyurea therapy have long been suspected of causing premature aging of the hematopoietic system, and potentially increasing the risk of hematological malignancies. An important finding of this study was that the observed concentration of CD34bright cells and of all the HSPCs decreased logarithmically with time of treatment with HU. This correlation was independent of age and specific to HU treatment. Although the number of circulating HSPCs is influenced by many parameters, our findings suggest that HU treatment may decrease premature aging and hematologic malignancy risk compared to the other therapeutic modalities in SCD.


Blood ◽  
2021 ◽  
Author(s):  
Lei Yu ◽  
Greggory Myers ◽  
Chia-Jui Ku ◽  
Emily Schneider ◽  
Yu Wang ◽  
...  

Histone H3 lysine 4 methylation (H3K4Me) is most often associated with chromatin activation, and removing H3K4 methyl groups has been shown to be coincident with gene repression. H3K4Me demethylase KDM1a/LSD1 is a therapeutic target for multiple diseases, including for the potential treatment of b-globinopathies (sickle cell disease and b-thalassemia) since it is a component of g-globin repressor complexes, and LSD1 inactivation leads to robust induction of the fetal globin genes. The effects of LSD1 inhibition in definitive erythropoiesis are not well characterized, so we examined the consequences of conditional inactivation of Lsd1 in adult red blood cells using a new Gata1creERT2 BAC transgene. Erythroid-specific loss of Lsd1 activity in mice led to a block in erythroid progenitor differentiation and to the expansion of GMP-like cells, converting hematopoietic differentiation potential from an erythroid to a myeloid fate. The analogous phenotype was also observed in human hematopoietic stem and progenitor cells (HSPC), coincident with induction of myeloid transcription factors (e.g. PU.1 and CEBPa). Finally, blocking the activity of transcription factors PU.1 or RUNX1 at the same time as LSD1 inhibition rescued myeloid lineage conversion to an erythroid phenotype. These data show that LSD1 promotes erythropoiesis by repressing myeloid cell fate in adult erythroid progenitors, and that inhibition of the myeloid differentiation pathway reverses the lineage switch induced by LSD1 inactivation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 468-468
Author(s):  
Jiwang Zhang ◽  
Xi He ◽  
Sach Jayasinghe ◽  
Jason Ross ◽  
Jeff Haug ◽  
...  

Abstract Pten was the first phosphatase identified as a tumor suppressor and one of the most frequently mutated genes involved in human tumor/cancer. Pten, involved in regulation of both PI3K/Akt and MEK/Erk activity, is downstream of growth factor, cytokine, integrin and cadherin signaling pathways and therefore plays important roles in cell growth, survival, differentiation, metabolism and migration. Although Pten mutation is not common in leukemic cells, phosphorylated Pten (p-Pten), which represents the inactive form of Pten, has been observed in a majority of acute myeloid leukemias that are associated with poor clinical outcomes. To explore the role of Pten in hematopoietic stem cell (HSC) regulation and leukemogenesis, we generated an interferon-inducible Pten knockout mouse by crossing Mx1Cre mice with Ptenloxp mice. All of the mutant mice developed myeloproliferative disorder characterized by increased peripheral white blood cell counts, hyperproliferative macrophages and granulocytes in bone marrow and spleen, and multiple tissue infiltration by myeloid cells. The HSC number was decreased in the bone marrow but mobilized and expanded in the spleen. Extra-medullar hematopoiesis was shown by dramatically increased myeloid and erythroid progenitors in the spleen. B lymphocyte differentiation was blocked at the common lymphoid progenitor stage, while the T cell number was increased in all hematopoietic tissues. Compared to wild type, Pten mutant HSCs and progenitor cells were highly proliferative, forming larger colonies in an in vitro culture study. However, Pten mutant HSCs showed reduced competency in repopulation assay after in vivo bone marrow transplantation. Our study demonstrates that Pten plays important roles in restricting HSC activation, proliferation and mobilization. Pten also plays a role in HSC lineage decision by favoring myeloid differentiation at the expense of B lymphocyte lineage.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3525-3525
Author(s):  
Eva Diffner ◽  
Dominik Beck ◽  
Emma Gudgin ◽  
Julie Thoms ◽  
Kathy Knezevic ◽  
...  

Abstract Abstract 3525 Leukaemic transformation is driven by aberrant transcriptional programs often in combination with abnormal proliferative signalling. These programs operate in normal hematopoiesis where they are involved in hematopoietic stem cell (HSC) proliferation and maintenance. ERG is a component of normal and leukemic stem cell signatures and high ERG expression has been proposed as a risk factor for poor prognosis in acute myeloid leukemia (AML). However, mechanisms that underlie ERG expression in AML and how its expression relates to leukemic stemness are unknown. We report that ERG expression in AML is associated with activity of the ERG+85 stem cell enhancer (SCE) and a heptad of transcription factors that combinatorially regulate genes in normal HSCs. Gene expression signatures derived from ERG+85 stem cell enhancer (Fig A) and heptad activity (Fig B) predict clinical outcome in a cytogenetically normal cohort of AML (CN-AML) patients when ERG expression alone fails. The heptad signature is an independent risk factor for poor overall and event-free survival (Fig C). There were no long-term survivors amongst patients with a heptad signature, FLT3 mutations and wild-type NPM1 (Fig D) pointing to a hitherto unappreciated link between aberrant signaling and transcriptional mediators of hematopoietic stem cell identity. In two independent cohorts, the heptad signature was as closely associated with wild-type NPM1 AML as the HOX signature was with mutant NPM1 AML (Fig E–F) suggestive of a collective role for these transcription factors in mediating the leukemic signature in the former. Taken together, these results show that key transcriptional regulators cooperate in establishing stem cell signatures in leukemic cells and that the underlying spectrum of somatic mutations contributes to the development of these signatures and modulate their influence on clinical outcome. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-28-SCI-28
Author(s):  
Mitchell J. Weiss

Abstract Long noncoding (Lnc) RNAs are RNA transcripts greater than 200 nucleotides (nt) that regulate gene expression independent of protein coding potential (1-3). It is estimated that thousands of lncRNAs play vital roles in diverse cellular processes. LncRNAs modulate many stages of gene expression by regulating transcription, epigenetics, splicing, translation, and protein localization. We hypothesize that multiple lncRNAs are expressed specifically during erythrocyte and megakaryocyte differentiation, and are likely to have important roles. To identify lncRNAs in erythro-megakaryopoiesis, we performed strand-specific, paired-end deep sequencing (RNA-Seq) to a depth of 200 million reads per sample on two replicates each of murine Ter119+erythroblasts, CD41+ megakaryocytes and bipotential megakaryocyte-erythroid progenitors (MEPs) [lin- Kit+ Sca1- CD16/32- CD34-], and used bioinformatic filtering tools to identify approximately 1,100 candidate lncRNAs. Over 60 percent of these lncRNAs are novel unannotated transcripts with exquisite lineage-specific expression. Using erythroid and megakaryocytic primary cell ChIP-Seq for key transcription factors (TFs) GATA1, TAL1, GATA2,and FLI1, we found that the loci of lncRNAs show similar degree of TF binding as coding genes. We used the erythroid line G1E-ER4 (which expresses estrogen-activated GATA1) to confirm that lncRNAs bound by GATA1 are also directly regulated by it. Furthermore, we used histone methylation ChIP-Seq to show that most lncRNAs arise from classical “promoters” with high H3K4me3 levels and low H3K4me1 levels. Thus, we find that lncRNAs show epigenetic features similar to the promoters of coding genes and are directly regulated by similar TF networks. Comparison of the transcriptomes of mouse fetal liver and human cord blood erythroblasts demonstrated that lncRNAs are expressed in a highly species-specific fashion, i.e., most lncRNAs identifiable in one species are not transcribed in the other, even though the corresponding genomic region is present in both species. Numerous non-conserved but functional lncRNAs are reported in the literature, and the significance of conservation in lncRNA biology is greatly debated. In order to identify functional lncRNAs, we are currently performing RNAi knockdown on numerous candidates to assess how loss of function affects erythroid maturation. We are also performing HITS-CLIP of key chromatin modifying complexes and erythroid transcription factors to identify lncRNAs bound to them. Our studies are beginning to define new layers of gene regulation in normal erythro-megakaryopoiesis, which may be relevant to the pathophysiology of related disorders including various anemias, myeloproliferative and myelodysplastic syndromes and leukemias. 1. Wang K.C., Chang H.Y. Molecular mechanisms of long noncoding RNAs. Molecular Cell. 2011;43(6):904-914. Prepublished on 2011/09/20 as DOI 10.1016/j.molcel.2011.08.018. 2. Hu W., Alvarez-Dominguez J.R., Lodish H.F. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO reports. 2012;13(11):971-983. Prepublished on 2012/10/17 as DOI 10.1038/embor.2012.145. 3. Paralkar V.R., Weiss M.J. Long noncoding RNAs in biology and hematopoiesis. Blood. 2013;121(24):4842-4846. Prepublished on 2013/05/07 as DOI 10.1182/blood-2013-03-456111. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document