Syntaxin 12 and COMMD3 are new factors that function with VPS33B in the biogenesis of platelet α-granules

Blood ◽  
2021 ◽  
Author(s):  
Andrea L Ambrosio ◽  
Hallie P Febvre ◽  
Santiago Mauro Di Pietro

Platelet a-granules regulate hemostasis and myriad other physiological processes but their biogenesis is unclear. Mutations in only three proteins are known to cause a-granule defects and bleeding disorders in humans. Two such proteins, VPS16B and VPS33B, form a complex mediating transport of newly synthesized a-granule proteins through megakaryocyte endosomal compartments. It is unclear how the VPS16B/VPS33B complex accomplishes this function. Here we report VPS16B/VPS33B associates physically with Stx12, a SNARE protein that mediates vesicle fusion at endosomes. Importantly, Stx12 deficient megakaryocytes display reduced a-granule numbers and overall levels of a-granule proteins, thus revealing Stx12 as new component of the a-granule biogenesis machinery. VPS16B/VPS33B also binds CCDC22, a component of the CCC complex working at endosome exit sites. CCDC22 competes with Stx12 for binding to VPS16B/VPS33B suggesting a possible hand-off mechanism. Moreover, the major CCC form expressed in megakaryocytes contains COMMD3, one of ten COMMD proteins. Deficiency of COMMD3/CCDC22 causes reduced a-granule numbers and overall levels of a-granule proteins, establishing the COMMD3/CCC complex as a new factor in a-granule biogenesis. Furthermore, P-Selectin traffics through the cell surface in a COMMD3-dependent manner and depletion of COMMD3 results in lysosomal degradation of P-Selectin and PF4. Stx12 and COMMD3/CCC deficiency cause less severe phenotypes than VPS16B/VPS33B deficiency, suggesting Stx12 and COMMD3/CCC assist but are less important than VPS16B/VPS33B in a-granule biogenesis. Mechanistically, our results suggest VPS16B/VPS33B coordinates the endosomal entry and exit of a-granule proteins by linking the fusogenic machinery with a ubiquitous endosomal retrieval complex that is repurposed in megakaryocytes to make a-granules.

2008 ◽  
Vol 28 (15) ◽  
pp. 4805-4818 ◽  
Author(s):  
Yoshinori Tanaka ◽  
Nobuyuki Tanaka ◽  
Yasushi Saeki ◽  
Keiji Tanaka ◽  
Masaaki Murakami ◽  
...  

ABSTRACT Interleukin 6 (IL-6), a pleiotropic cytokine, functions in cells through its interaction with its receptor complex, which consists of two ligand-binding α subunits and two signal-transducing subunits known as gp130. There is a wealth of studies on signals mediated by gp130, but its downregulation is less well understood. Here we found that IL-6 stimulation induced lysosome-dependent degradation of gp130, which correlated with an increase in the K63-linked polyubiquitination of gp130. The stimulation-dependent ubiquitination of gp130 was mediated by c-Cbl, an E3 ligase, which was recruited to gp130 in a tyrosine-phosphorylated SHP2-dependent manner. We also found that IL-6 induced a rapid translocation of gp130 from the cell surface to endosomal compartments. Furthermore, the vesicular sorting molecule Hrs contributed to the lysosomal degradation of gp130 by directly recognizing its ubiquitinated form. Deficiency of either Hrs or c-Cbl suppressed gp130 degradation, which leads to a prolonged and amplified IL-6 signal. Thus, our present report provides the first evidence for involvement of a c-Cbl/SHP2 complex in ubiquitination and lysosomal degradation of gp130 upon IL-6 stimulation. The lysosomal degradation of gp130 is critical for cessation of IL-6-mediated signaling.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 974
Author(s):  
César Díaz-Godínez ◽  
Joshue Fabián Jorge-Rosas ◽  
Mario Néquiz ◽  
Santiago Martínez-Calvillo ◽  
Juan P. Laclette ◽  
...  

NETosis is a neutrophil process involving sequential steps from pathogen detection to the release of DNA harboring antimicrobial proteins, including the central generation of NADPH oxidase dependent or independent ROS. Previously, we reported that NETosis triggered by Entamoeba histolytica trophozoites is independent of NADPH oxidase activity in neutrophils, but dependent on the viability of the parasites and no ROS source was identified. Here, we explored the possibility that E. histolytica trophozoites serve as the ROS source for NETosis. NET quantitation was performed using SYTOX® Green assay in the presence of selective inhibitors and scavengers. We observed that respiratory burst in neutrophils was inhibited by trophozoites in a dose dependent manner. Mitochondrial ROS was not also necessary, as the mitochondrial scavenger mitoTEMPO did not affect the process. Surprisingly, ROS-deficient amoebas obtained by pre-treatment with pyrocatechol were less likely to induce NETs. Additionally, we detected the presence of MPO on the cell surface of trophozoites after the interaction with neutrophils and found that luminol and isoluminol, intracellular and extracellular scavengers for MPO derived ROS reduced the amount of NET triggered by amoebas. These data suggest that ROS generated by trophozoites and processed by the extracellular MPO during the contact with neutrophils are required for E. histolytica induced NETosis.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1545
Author(s):  
Laura Ordas ◽  
Luca Costa ◽  
Anthony Lozano ◽  
Christopher Chevillard ◽  
Alexia Calovoulos ◽  
...  

The plasma membrane is a key actor of cell migration. For instance, its tension controls persistent cell migration and cell surface caveolae integrity. Then, caveolae constituents such as caveolin-1 can initiate a mechanotransduction loop that involves actin- and focal adhesion-dependent control of the mechanosensor YAP to finely tune cell migration. Tetraspanin CD82 (also named KAI-1) is an integral membrane protein and a metastasis suppressor. Its expression is lost in many cancers including breast cancer. It is a strong inhibitor of cell migration by a little-known mechanism. We demonstrated here that CD82 controls persistent 2D migration of EGF-induced single cells, stress fibers and focal adhesion sizes and dynamics. Mechanistically, we found that CD82 regulates membrane tension, cell surface caveolae abundance and YAP nuclear translocation in a caveolin-1-dependent manner. Altogether, our data show that CD82 controls 2D cell migration using membrane-driven mechanics involving caveolin and the YAP pathway.


2002 ◽  
Vol 168 (3) ◽  
pp. 1244-1251 ◽  
Author(s):  
Simon Mauch ◽  
Cornelia Kolb ◽  
Birgit Kolb ◽  
Thorsten Sadowski ◽  
Radislav Sedlacek

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Parijat S Joy ◽  
Peter M. Snyder

There is a link between diabetes mellitus and hypertension, but the underlying mechanisms are poorly understood. The epithelial Na + channel ENaC plays an important role in blood pressure control; ENaC mutations cause Liddle’s syndrome, an inherited form of hypertension. Previous work suggests that ENaC abundance is increased in diabetes mellitus, but the underlying mechanisms are unclear. Here we tested the effect of glucose on ENaC regulation. In Ussing chamber experiments using mouse kidney collecting duct cells (mCCD) and primary cultures of human lung epithelia, elevated glucose increased ENaC-mediated short-circuit current by 2-3 times in a dose-dependent manner from 100mg/dl to 400mg/dl of glucose. This was caused by an increase in ENaC abundance at the cell surface. We hypothesized that hyperglycemia might enhance ENaC cell surface abundance by altering activity of Nedd4-2, an E3 ubiquitin-protein ligase that binds to PY motifs within ENaC. Consistent with this hypothesis, we found that mutation of the PY motifs abolished ENaC stimulation by elevated glucose. Moreover, using a biotinylation assay, we found that elevated glucose (300 mg/dl) slowed ENaC endocytosis and reduced its degradation in the endocytic pathway. These changes in trafficking are explained by our finding that glucose reduced ENaC binding to Nedd4-2, and hence, reduced ENaC ubiquitination. O-GlcNAcylation plays a role in insulin signaling and glucose toxicity due to increased O-GlcNAcylation of target proteins. To test a role for O-GlcNAcylation in ENaC stimulation by glucose, we used 6-Diazo-5-oxo-l-norleucine (DON) to inhibit O-GlcNAcylation. DON abolished ENaC stimulation by elevated glucose. Using anti-O-GlcNAc antibody, we found that Nedd4-2 is a substrate for O-GlcNAcylation, and this modification was increased by elevated glucose. DON also reversed the reduction in binding of Nedd4-2 to ENaC at high glucose levels. Together, our data suggest a model in which hyperglycemia stimulates ENaC through O-GlcNAcylation of Nedd4-2, increasing ENaC abundance at cell surface thus increasing epithelial sodium absorption.


1984 ◽  
Vol 4 (4) ◽  
pp. 681-687
Author(s):  
B Love ◽  
M B Rotheim

Tetrahymena ciliary membrane vesicles are shown to interact with preconjugant cells in a mating type-specific way. When cells are treated with vesicles of a different mating type before mixing for conjugation, cell pairing is enhanced, and the normal prepairing period is partially eliminated. This enhancement is mating type specific since it is not observed after pretreatment of cells with vesicles of their own mating type. In contrast, when vesicles are added at the time of mixing of two starved cultures, cell pairing is delayed in a concentration-dependent manner. By varying the conditions, we demonstrated enhancement or inhibition, or both. These results are interpreted in terms of two independent interactions of cells with vesicles. We suggest that first, vesicles substitute for another cell in cell-cell prepairing interaction and second, vesicles compete for adhesion sites produced during the prepairing period. Finally, the data presented are summarized within a speculative framework that calls attention to potential analogies with hormone-receptor signaling in mammalian cells.


2014 ◽  
Vol 192 (6) ◽  
pp. 2913-2919 ◽  
Author(s):  
Qian Zhang ◽  
Hong Yi Wang ◽  
Fang Wei ◽  
Xiaobin Liu ◽  
Jennifer C. Paterson ◽  
...  

2000 ◽  
Vol 278 (6) ◽  
pp. F989-F998 ◽  
Author(s):  
Rima M. Koka ◽  
Erick Huang ◽  
John C. Lieske

Adhesion of microcrystals that nucleate in tubular fluid to the apical surface of renal tubular cells could be a critical step in the formation of kidney stones, 12% of which contain uric acid (UA) either alone or admixed with calcium oxalates or calcium phosphates. UA crystals bind rapidly to monolayer cultures of monkey kidney epithelial cells (BSC-1 line), used to model the surface of the nephron, in a concentration-dependent manner. The urinary glycoproteins osteopontin, nephrocalcin, and Tamm-Horsfall glycoprotein had no effect on binding of UA crystals to the cell surface, whereas other polyanions including specific glycosaminoglycans blocked UA crystal adhesion. Specific polycations also inhibited adhesion of UA crystals and appeared to exert their inhibitory effect by coating cells. However, removal of anionic cell surface molecules with neuraminidase, heparitinase I, or chondroitinase ABC each increased UA crystal binding, and sialic acid-binding lectins had no effect. These observations suggest that hydrogen bonding and hydrophobic interactions play a major role in adhesion of electrostatically neutral UA crystals to renal cells, unlike the interaction of calcium-containing crystals with negatively charged molecules on the apical cell surface via ionic forces. After adhesion to the plasma membrane, subsequent cellular events could contribute to UA crystal retention in the kidney and the development of UA or mixed calcium and UA calculi.


2013 ◽  
Vol 304 (1) ◽  
pp. H94-H103 ◽  
Author(s):  
Aude Belliard ◽  
Yoann Sottejeau ◽  
Qiming Duan ◽  
Jessa L. Karabin ◽  
Sandrine V. Pierre

Na+,K+-ATPase and cell survival were investigated in a cellular model of ischemia-reperfusion (I/R)-induced injury and protection by ouabain-induced preconditioning (OPC). Rat neonatal cardiac myocytes were subjected to 30 min of substrate and coverslip-induced ischemia followed by 30 min of simulated reperfusion. This significantly compromised cell viability as documented by lactate dehydrogenase release and Annexin V/propidium iodide staining. Total Na+,K+-ATPase α1- and α3-polypeptide expression remained unchanged, but cell surface biotinylation and immunostaining studies revealed that α1-cell surface abundance was significantly decreased. Na+,K+-ATPase-activity in crude homogenates and 86Rb+ transport in live cells were both significantly decreased by about 30% after I/R. OPC, induced by a 4-min exposure to 10 μM ouabain that ended 8 min before the beginning of ischemia, increased cell viability in a PKCε-dependent manner. This was comparable with the protective effect of OPC previously reported in intact heart preparations. OPC prevented I/R-induced decrease of Na+,K+-ATPase activity and surface expression. This model also revealed that Na+,K+-ATPase-mediated 86Rb+ uptake was not restored to control levels in the OPC group, suggesting that the increased viability was not conferred by an increased Na+,K+-ATPase-mediated ion transport capacity at the cell membrane. Consistent with this observation, transient expression of an internalization-resistant mutant form of Na+,K+-ATPase α1 known to have increased surface abundance without increased ion transport activity successfully reduced I/R-induced cell death. These results suggest that maintenance of Na+,K+-ATPase cell surface abundance is critical to myocyte survival after an ischemic attack and plays a role in OPC-induced protection. They further suggest that the protection conferred by increased surface expression of Na+,K+-ATPase may be independent of ion transport.


Sign in / Sign up

Export Citation Format

Share Document