PLCG1 is required for AML1-ETO leukemia stem cell self-renewal

Blood ◽  
2021 ◽  
Author(s):  
Tina M. Schnoeder ◽  
Adrian Schwarzer ◽  
Ashok Kumar Jayavelu ◽  
Chen-Jen Hsu ◽  
Joanna Kirkpatrick ◽  
...  

In an effort to identify novel drugs targeting fusion-oncogene induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE) driven AML we uncovered a de-regulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein which is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem- and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO positive leukemic stem cells.

Author(s):  
Fang Tan ◽  
Flaubert Mbunkui ◽  
Solomon Ofori-Acquah

AbstractActivated leukocyte cell adhesion molecule (ALCAM) belongs to the immunoglobulin cell adhesion molecule super family. ALCAM is implicated in tumor progression, inflammation, and the differentiation of hematopoietic stem cells. Hitherto, the identity of regulatory DNA elements and cognate transcription factors responsible for ALCAM gene expression remained unknown. In this report, the human ALCAM promoter was cloned and its transcriptional mechanisms elucidated. The promoter is TATA-less and contains multiple GC-boxes. A proximal 650-bp promoter fragment conferred tissue-independent activation, whereas two contiguous regions upstream of this region negatively influenced promoter activity in a tissue-specific manner. The positive regulatory promoter region was mapped to a core 50 base pair sequence containing a conical Sp1 element. Mutation analysis revealed that this element alone or in tandem with elements immediately upstream was required for maximal promoter activity. Chromatin analysis revealed that Sp1 binds exclusively to the canonical binding sequence in vivo, but not to DNA sequence immediately upstream. Finally, we showed that over-expression of Sp1 significantly increased the basal promoter activity. Thus, Sp1 activated the ALCAM promoter in most cells. These findings have important ramifications for unraveling the roles of ALCAM in inflammation and tumorigenesis.


2019 ◽  
Vol 216 (10) ◽  
pp. 2362-2377 ◽  
Author(s):  
Gaëlle H. Martin ◽  
Nainita Roy ◽  
Sohini Chakraborty ◽  
Alexis Desrichard ◽  
Stephen S. Chung ◽  
...  

Despite significant efforts to improve therapies for acute myeloid leukemia (AML), clinical outcomes remain poor. Understanding the mechanisms that regulate the development and maintenance of leukemic stem cells (LSCs) is important to reveal new therapeutic opportunities. We have identified CD97, a member of the adhesion class of G protein–coupled receptors (GPCRs), as a frequently up-regulated antigen on AML blasts that is a critical regulator of blast function. High levels of CD97 correlate with poor prognosis, and silencing of CD97 reduces disease aggressiveness in vivo. These phenotypes are due to CD97’s ability to promote proliferation, survival, and the maintenance of the undifferentiated state in leukemic blasts. Collectively, our data credential CD97 as a promising therapeutic target on LSCs in AML.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 724-724
Author(s):  
Michihiro Kobayashi ◽  
Yunpeng Bai ◽  
Sisi Chen ◽  
Sarah C Nabinger ◽  
Chonghua Yao ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogeneous disease with multiple signaling pathways contributing to its pathogenesis. Mutations in receptor tyrosine kinase KIT and FLT3 are found in approximately 40% of AML patients and targeted therapies for inhibiting KIT and FLT3 have failed, thus new targets for therapeutic intervention need to be identified. The phosphatase of regenerating liver (PRL) family of phosphatases, consisting of PRL1, PRL2, and PRL3, represents an intriguing group of proteins being validated as biomarkers and therapeutic targets in human cancer. While PRL2 is highly expressed in some subtypes of human AML, including AML1-ETO+ AML and AML with mixed lineage leukemia (MLL) translocations, its role in AML is largely unknown. To determine the role of PRL2 in the pathogenesis of AML, we utilized two murine models of human AML induced by transducing mouse HSCs with AML1-ETO or MLL-AF9. We found that PRL2 is important for the progression and maintenance of leukemia induced by AML1-ETO or MLL-AF9 through enhancing leukemia stem cell (LSC) self-renewal. To elucidate the mechanisms by which PRL2 promotes LSC maintenance, we performed genome wide RNA-seq analysis of MLL-AF9+ LSCs. Gene Set Enrichment Analysis (GESA) indicates that PRL2 deficiency alters the MLL-AF9 signature essential for LSC self-renewal. We have recently identified PRL2 to be important for the proliferation and self-renewal of hematopoietic stem cells (HSCs) through the regulation of KIT signaling. Notably, PRL2 null hematopoietic progenitor cells showed decreased KIT phosphorylation as well as ERK phosphorylation following SCF stimulation, suggesting that PRL2 is important for KIT activation. Given that KIT inactivation could be mediated by removal from the cell surface and intracellular degradation, we reasoned that PRL2 may regulate KIT receptor internalization and stability. That was indeed the case. We found that the KIT protein half-life in PRL2 null hematopoietic progenitor cells (Kit+) was significantly decreased compared to WT cells. Furthermore, PRL2 null progenitor cells showed enhanced KIT ubiquitination compared to WT cells and less KIT was found on the surface of PRL2 null progenitor cells compared to WT cells following SCF stimulation. We also found that loss of PRL2 in human AML cells resulted in enhanced internalization of KIT. These observations demonstrate that PRL2 deficiency results in less KIT on the cell surface and a lower global KIT level in the cell. Upon SCF stimulation, KIT binds to and induces the phosphorylation of CBL proteins, which in turn act as E3 ligases, mediating the ubiquitination and degradation of KIT. To understand how PRL2 modulates the turnover of KIT in hematopoietic cells, we performed GST-pulldown assays and found that the substrate-trapping mutant PRL2/CS-DA showed an increased association with KIT and CBL compared to wild-type PRL2 in Kasumi-1 cells, suggesting that KIT and CBL may be PRL2 substrates. Furthermore, we found that PRL2/CS-DA mutant showed enhanced association with FLT3 and CBL compared to wild-type PRL2 in MV4-11 cells. Our data suggest that PRL2 dephosphorylates CBL and inhibits CBL activity toward KIT and FLT3, leading to sustained activation of downstream signaling pathways. To determine the functional significance of PRL2 in human AML with KIT and FLT3 mutations, we utilized two well-established murine model of myeloproliferative neoplasms (MPN) induced by KITD814V or FLT3-ITD. We found that loss of Prl2 decreased the ability of oncogenic KITD814V and FLT3-ITD to promote mouse hematopoietic stem and progenitor cell (HSPC) proliferation in vitro andthe development of MPN in vivo. Furthermore, we found that genetic and pharmacological inhibition of PRL2 decreased the proliferation and survival of human AML cells bearing KIT or FLT3 mutations. Taken together, we demonstrate that PRL2 promotes leukemia stem cell (LSC) self-renewal and maintenance through sustaining the activity of oncogenic KIT and FLT3 signals. Our findings suggest that pharmacological inhibition of PRL2 holds potential as a novel therapy for acute myeloid leukemia, and might also be applicable to the treatment of other human cancers. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3743-3743
Author(s):  
Nils Hansen ◽  
Helena Agerstam ◽  
Martin Wahlestedt ◽  
Mats Ehinger ◽  
Petra Johnels ◽  
...  

Abstract Abstract 3743 Background: The P210 BCR/ABL1 fusion protein initiates signaling through several down stream pathways such as STAT5, PI3K, AKT, RAS, and WNT. However, only few down stream mediators have so far been thoroughly studied in vivo in the context of BCR/ABL1-mediated induction of CML-like disorder in mice deficient for the specific genes. Suppressor of cytokine signaling 2 (SOCS2) is known as a feedback inhibitor of cytokine signaling, a negative regulator of the STAT5 pathway, and is markedly upregulated in primary bone marrow cells from patients with chronic myeloid leukemia (CML). However, it has not been clear whether SOCS2 is involved in BCR/ABL1 induced cell transformation or whether it is important for normal hematopoietic stem cell (HSC) function. Methods: To evaluate the stem cell function of Socs2, HSCs from wild type and Socs2 deficient mice were competitively transplanted into lethally irradiated recipients. Blood chimerism and lineage distribution were analyzed by flow cytometry at 4 and 18 weeks after transplantation. To investigate the potential role of Socs2 in CML, c-kit enriched Socs2(−/−) and wild type cells were transduced with a BCR/ABL1 expressing retroviral vector and transplanted into lethally irradiated recipients. The in vivo development of malignant disease was analyzed by peripheral blood cell counts and, upon euthanization, by flow cytometry and histopathology. Socs family gene expression was assessed by Q-RT/PCR and Stat5 phosphorylation by Western blotting on BCR-ABL1 expressing cells. Results: Although Socs2 was previously found to be upregulated in long-term repopulating HSCs by gene expression arrays, Socs2 deficient HSCs were indistinguishable from wild type HSCs when challenged in competitive bone marrow transplantation. Furthermore, when expressing BCR/ABL1, both Socs2 deficient and wild type cells induced a CML-like disease with an average survival of three weeks after transplantation. The leukemic mice suffered from elevated white blood cell counts and splenomegaly. To investigate if other Socs family members were upregulated to compensate for the Socs2 deficiency, we compared the expression of the Socs gene family members in Socs2(−/−) with wild type, leukemic cells. The expression levels of all other Socs genes were similar between Socs2(−/−) and Socs2 wt cells, suggesting that compensatory mechanisms of other Socs genes do not account for the lack of Socs2 function. In addition, the finding that the phosphorylation of Stat5 was unaffected in Socs2(−/−) cells indicates that BCR/ABL1-induced Stat5-phosphorylation is insensitive to Socs2 levels. Conclusions: Collectively, our results clarify that Socs2 is dispensable for normal HSC function and for BCR/ABL1-induced CML-like disease. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 76 ◽  
pp. S31
Author(s):  
Christopher Park ◽  
Gaelle Martin ◽  
Nainita Roy ◽  
Sohini Chakraborty ◽  
Alexis Desrichard ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2276-2285 ◽  
Author(s):  
Maria De La Luz Sierra ◽  
Paola Gasperini ◽  
Peter J. McCormick ◽  
Jinfang Zhu ◽  
Giovanna Tosato

The mechanisms underlying granulocyte-colony stimulating factor (G-CSF)–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood remain elusive. We provide evidence that the transcriptional repressor growth factor independence-1 (Gfi-1) is involved in G-CSF–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood. We show that in vitro and in vivo G-CSF promotes expression of Gfi-1 and down-regulates expression of CXCR4, a chemokine receptor essential for the retention of hematopoietic stem cells and granulocytic cells in the bone marrow. Gfi-1 binds to DNA sequences upstream of the CXCR4 gene and represses CXCR4 expression in myeloid lineage cells. As a consequence, myeloid cell responses to the CXCR4 unique ligand SDF-1 are reduced. Thus, Gfi-1 not only regulates hematopoietic stem cell function and myeloid cell development but also probably promotes the release of granulocytic lineage cells from the bone marrow to the peripheral blood by reducing CXCR4 expression and function.


2017 ◽  
Vol 53 ◽  
pp. S91
Author(s):  
Kerstin Kaufmann ◽  
Stanley Ng ◽  
Shin-ichiro Takayanagi ◽  
Jessica McLeod ◽  
Peter van Galen ◽  
...  

Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Laura S. Haneline ◽  
Troy A. Gobbett ◽  
Rema Ramani ◽  
Madeleine Carreau ◽  
Manuel Buchwald ◽  
...  

Fanconi anemia (FA) is a complex genetic disorder characterized by progressive bone marrow (BM) aplasia, chromosomal instability, and acquisition of malignancies, particularly myeloid leukemia. We used a murine model containing a disruption of the murine homologue ofFANCC (FancC) to evaluate short- and long-term multilineage repopulating ability of FancC −/− cells in vivo. Competitive repopulation assays were conducted where “test”FancC −/− or FancC +/+ BM cells (expressing CD45.2) were cotransplanted with congenic competitor cells (expressing CD45.1) into irradiated mice. In two independent experiments, we determined that FancC −/− BM cells have a profound decrease in short-term, as well as long-term, multilineage repopulating ability. To determine quantitatively the relative production of progeny cells by each test cell population, we calculated test cell contribution to chimerism as compared with 1 × 105 competitor cells. We determined that FancC −/− cells have a 7-fold to 12-fold decrease in repopulating ability compared with FancC +/+cells. These data indicate that loss of FancC function results in reduced in vivo repopulating ability of pluripotential hematopoietic stem cells, which may play a role in the development of the BM failure in FA patients. This model system provides a powerful tool for evaluation of experimental therapeutics on hematopoietic stem cell function.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document