CD34+ Selected T-Cell Depleted Peripheral Blood Stem Cell Transplantation from HLA-Haplocompatible Donors for the Treatment of Severe Combined Immunodeficiency Disease.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2914-2914
Author(s):  
Giun-Yi Hung ◽  
Biljana Horn ◽  
Elizabeth Dunn ◽  
Ching-Ying Oon ◽  
Morton Jerome Cowan

Abstract We report the results of haplocompatible peripheral blood stem cell transplantation (PBSCT) utilizing CD34+ selection and T-cell depletion for 17 patients with severe combined immunodeficiency disease (SCID). Of these patients, 11 had T−B−NK+, 1 had T−B+NK+, and 5 had T−B+NK− phenotype. A total of 15 cell preparations were processed immediately after collection, in which two were shared between two twin siblings. Total viable nucleated cells (TVNC) in the original cell collections were between 5.9 and 9.13×1010 (median 7.0×1010) with 0.47–2.39% (median 0.9%) CD34+ cells. After Isolex 300i (Baxter Inc., n=14) or CliniMACS System (Miltenyi Biotec Inc., n=1) processing, a median number of 379×106 (89–970×106) TVNC were recovered, with a median viability of 98% (83–100%) and median purity of 96% (89–100%) CD34+ cells. All Isolex processed (n=14) cells were further T-cell depleted with OKT3 monoclonal antibody, yielding a median of 0.09% CD3+ cells (0.008–0.4%). One preparation that utilized the CliniMACS System yielded only 0.06% CD3+ cells, hence did not receive further T-cell depletion. Recovery of CD34+ cells after complete processing was from 13.3% to 60.2% (median 50.1%). Twelve patients (70.6%) are alive 2 months to 8.7 years post transplant. A total of five patients died from infections or transplant-related complications. Four patients suffered from autoimmune hemolytic anemia, which resulted in one death. Fourteen patients engrafted. One of three patients who did not engraft subsequently received a boost from the same donor but eventually died without engraftment, and 2 received a matched unrelated BMT with myeloablative conditioning and recovered T- and B-cell function. At last follow-up the median time for the recovery of T- and B-cell function was 8.5 months and 1 year, respectively. The dose of CD3 did not show any influence on T- or B-cell function recovery (p=0.48 and 0.09, respectively). And the dose of CD34+ cells did not influence T-cell function recovery (p=0.1), but did influence B-cell function recovery, which was statistically significant (p=0.02). The B− SCID phenotype is associated with a poorer outcome compared to the B+ SCID phenotype, with 50% and 100% survival rates, respectively. However, this result was not statistically significant (p=0.07). Of the 9 surviving patients followed for more than 2 years, most are in good general health. The body height growth curve is within the 5th and 10–25th percentiles in 3 and 4 patients, respectively. For body weight, the growth curve is within 10–25th and 50–75th percentiles in 5 and 2 patients, respectively. Five have achieved successful recovery of both T- and B-cell immunity and require no medication at last visit; however, 2 of these had graft failure following their initial haplocompatible transplant, and received a second BMT from a matched unrelated donor with conditioning. Three patients with X-linked SCID (3/5) didn’t achieve B-cell reconstitution and still require IVIG replacement therapy. Based on these results, we conclude that for SCID patients who lack an HLA-matched related donor, CD34+ selected T-cell depleted haplocompatible PBSCT is an effective treatment.

Blood ◽  
1993 ◽  
Vol 81 (8) ◽  
pp. 2021-2030 ◽  
Author(s):  
Y Dror ◽  
R Gallagher ◽  
DW Wara ◽  
BW Colombe ◽  
A Merino ◽  
...  

Abstract We describe our 9-year experience with lectin-treated T-cell-depleted haplocompatible parental bone marrow transplantation (BMT) for 24 patients with severe combined immunodeficiency disease (SCID). Nineteen of 21 evaluable patients had T-cell engraftment; 2 of 11 patients tested had B-cell and monocyte engraftment. Fourteen of 24 (58%) patients are alive 7 months to 9.8 years post-BMT. Seventeen of 24 patients received pretransplant conditioning with chemotherapy and/or total body irradiation, and 8 of 24 received more than one transplant. Patients who received conditioning had a survival rate of 61% versus 57% for those who received no conditioning. None received graft-versus- host disease (GVHD) prophylaxis and no patient had acute or chronic GVHD greater than grade I. Kinetics and follow-up of immune recovery were analyzed in 14 patients who are greater than 1 year from transplant. Half of the patients showed evidence of T-cell function by 3 months and normal T-cell function by 4 to 7 months post-BMT. On average, T-cell numbers and subsets became normal 10 to 12 months posttransplant. Recovery of B-cell function was more delayed, although in most patients B-cell numbers and IgM levels were normal by 12 months post-BMT. B-cell function, as determined by isohemagglutinin titers or specific antibodies to pneumococcal polysaccharide, keyhole limpet hemocyanin, or tetanus toxoid, became normal in 10 of 14 patients 2 to 8 years post-BMT. Seven of the 14 are off gammaglobulin therapy. Production of isohemagglutinins tended to predict recovery of antibody response to pneumococcal polysaccharide (P < .064). Based on these results, we believe that haplocompatible BMT is an effective, curative treatment for patients with SCID who lack an HLA-matched related donor.


Blood ◽  
1993 ◽  
Vol 81 (8) ◽  
pp. 2021-2030 ◽  
Author(s):  
Y Dror ◽  
R Gallagher ◽  
DW Wara ◽  
BW Colombe ◽  
A Merino ◽  
...  

We describe our 9-year experience with lectin-treated T-cell-depleted haplocompatible parental bone marrow transplantation (BMT) for 24 patients with severe combined immunodeficiency disease (SCID). Nineteen of 21 evaluable patients had T-cell engraftment; 2 of 11 patients tested had B-cell and monocyte engraftment. Fourteen of 24 (58%) patients are alive 7 months to 9.8 years post-BMT. Seventeen of 24 patients received pretransplant conditioning with chemotherapy and/or total body irradiation, and 8 of 24 received more than one transplant. Patients who received conditioning had a survival rate of 61% versus 57% for those who received no conditioning. None received graft-versus- host disease (GVHD) prophylaxis and no patient had acute or chronic GVHD greater than grade I. Kinetics and follow-up of immune recovery were analyzed in 14 patients who are greater than 1 year from transplant. Half of the patients showed evidence of T-cell function by 3 months and normal T-cell function by 4 to 7 months post-BMT. On average, T-cell numbers and subsets became normal 10 to 12 months posttransplant. Recovery of B-cell function was more delayed, although in most patients B-cell numbers and IgM levels were normal by 12 months post-BMT. B-cell function, as determined by isohemagglutinin titers or specific antibodies to pneumococcal polysaccharide, keyhole limpet hemocyanin, or tetanus toxoid, became normal in 10 of 14 patients 2 to 8 years post-BMT. Seven of the 14 are off gammaglobulin therapy. Production of isohemagglutinins tended to predict recovery of antibody response to pneumococcal polysaccharide (P < .064). Based on these results, we believe that haplocompatible BMT is an effective, curative treatment for patients with SCID who lack an HLA-matched related donor.


Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 72-79 ◽  
Author(s):  
Emily J. Tsai ◽  
Harry L. Malech ◽  
Martha R. Kirby ◽  
Amy P. Hsu ◽  
Nancy E. Seidel ◽  
...  

Abstract X-linked severe combined immunodeficiency (XSCID) is caused by mutations of the common gamma chain of cytokine receptors, γc. Because bone marrow transplantation (BMT) for XSCID does not provide complete immune reconstitution for many patients and because of the natural selective advantage conferred on lymphoid progenitors by the expression of normal γc, XSCID is a good candidate disease for therapeutic retroviral gene transfer to hematopoietic stem cells. We studied XSCID patients who have persistent defects in B-cell and/or combined B- and T-cell function despite having received T cell–depleted haploidentical BMT. We compared transduction of autologous B-cell lines and granulocyte colony-stimulating factor–mobilized peripheral CD34+ cells from these patients using an MFGS retrovirus vector containing the γc gene IL2RG pseudotyped with amphotropic, gibbon ape leukemia virus, or RD114 envelopes. Transduced B-cell lines and peripheral CD34+ cells demonstrated provirus integration and new cell-surface γc expression. The chimeric sheep model was exploited to test development of XSCID CD34+ cells into mature myeloid and lymphoid lineages. Transduced and untransduced XSCID CD34+ cells injected into developing sheep fetuses gave rise to myeloid cells. However, only transduced γc+ progenitors from XSCID patients developed into T and B cells. These results suggest that gene transfer to autologous peripheral CD34+ cells using MFGS-gc retrovirus may benefit XSCID patients with persistent T- and B-cell deficits despite prior BMT.


Blood ◽  
1981 ◽  
Vol 58 (3) ◽  
pp. 431-439 ◽  
Author(s):  
LG Lum ◽  
MC Seigneuret ◽  
RF Storb ◽  
RP Witherspoon ◽  
ED Thomas

Abstract Twenty-four patients with aplastic anemia or acute leukemia were treated by marrow grafts from HLA-identical donors after conditioning with high doses of cyclophosphamide and/or today body irradiation. They were studied between 4 and 63 mo (median 14.2) after transplantation. Seventeen patients had chronic graft-versus-host disease (C-GVHD) and 7 were healthy. They were studied for defects in their T- and B-cell function using and indirect hemolytic plaque assay for Ig production after 6 days of culture in the presence of pokeweek mitogen. T or B cells from the patients with or without C-GVHD were cocultured with T or B cells from their HLA-identical marrow donors or unrelated normal controls. Intrinsic B-cell defects, lack of helper T-cell activity, and suppressor T-cell activity were more frequently found in patients with C-GVHD than in healthy patients. Fifteen of the 17 patients with C-GVHD showed on or more defects in their T-and B-cell function compared to only 3 of the 7 patients without C-GVHD. None of the healthy controls, including the marrow donors, showed defects in their T- and B-cell functions. These in vitro findings may be helpful in assessing the process of immune reconstitution and the immunologic aberration found after human marrow transplantation.


Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2923-2930 ◽  
Author(s):  
Elie Haddad ◽  
Françoise Le Deist ◽  
Pierre Aucouturier ◽  
Marina Cavazzana-Calvo ◽  
Stephane Blanche ◽  
...  

We retrospectively analyzed the B-cell function and leukocyte chimerism of 22 patients with severe combined immunodeficiency with B cells (B+ SCID) who survived more than 2 years after bone marrow transplantation (BMT) to determine the possible consequences of BMT procedures, leukocyte chimerism, and SCID molecular deficit on B-cell function outcome. Circulating T cells were of donor origin in all patients. In recipients of HLA-identical BMT (n = 5), monocytes were of host origin in 5 and B cells were of host origin in 4 and of mixed origin in 1. In recipients of HLA haploidentical T-cell–depleted BMT (n = 17), B cells and monocytes were of host origin in 14 and of donor origin in 3. Engraftment of B cells was found to be associated with normal B-cell function. In contrast, 10 of 18 patients with host B cells still require Ig substitution. Conditioning regimen (ie, 8 mg/kg busulfan and 200 mg/kg cyclophosphamide) was shown neither to promote B-cell and monocyte engraftment nor to affect B-cell function. Eight patients with B cells of host origin had normal B-cell function. Evidence for functional host B cells was further provided in 3 informative cases by Ig allotype determination and by the detection, in 5 studied cases, of host CD27+ memory B cells as in age-matched controls. These results strongly suggest that, in some transplanted patients, host B cells can cooperate with donor T cells to fully mature in Ig-producing cells.


Sign in / Sign up

Export Citation Format

Share Document