Prognostic Value of Bone Marrow Angiogenesis in Patients with Multiple Myeloma Undergoing High-Dose Therapy and Autologous Stem Cell Transplantation.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3321-3321
Author(s):  
Olga Pokrovskaya ◽  
Larisa Mendeleeva ◽  
Irina Kaplanskaya ◽  
Elena Parovichnikova ◽  
Sergei Kulikov ◽  
...  

Abstract BACKGROUND. Angiogenesis is a constant hallmark of multiple myeloma (MM) progression. It has also been reported that bone marrow angiogenesis is a predictive factor of poor survival in newly diagnosed myeloma. The aim of the current study was to investigate the dynamics of bone marrow (BM) microvessel density (MVD) in patients undergoing high-dose therapy (HDT) and autologous stem cell transplantation (ASCT). PATIENTS AND METHODS. 36 patients with newly diagnosed MM (22 in stage II and 14 in stage III according to Salmon and Durie) were included in the study – 21 male and 15 female, median age – 51 ys (range 31–67). All patients underwent HDT that included 3–4 cycles of induction therapy (VAD), stem cell mobilization with cyclophosphamide 6 g/m2 and G-CSF 5 mcg/kg, EDAP and single or tandem ASCT with melphalan 200 mg/ m2. The BM biopsies for histological and immunohistochemical analysis were performed at the time of diagnosis, after induction, after stem cell mobilization before the 1st ASCT and after the end of therapy (5 times during the treatment). The Control group consisted of normal BM donors (7 male and 3 female, median age 29, (17–59)) who underwent BM biopsy during BM harvesting for alloBMT. Blood vessels were highlighted by immunostaining of endothelial cells with a monoclonal antibody to CD34 (Novocastra Lab Ltd). The MVD was calculated in 10 fields using an 40x objective and 16x ocular lens. RESULTS. At diagnosis in all MM pts, MVD was extremely high compared to normal donors (152±8 vs 74±4). A significant decrease of BM MVD was observed after each phase of therapy: after the induction therapy the MVD was 124±6; before the 1st ASCT – 109±5 and at the end of treatment – 97±3. There was a statistically significant increase of MVD after stem cell mobilization due to G-CSF (143±4). Although there was a marked decrease of BM MVD in MM pts with CR or VGPR, it nevertheless stayed significantly higher compared with control group (p<0,001). The analysis of probability of CR or VGPR duration after ASCT according to MVD at different phases of therapy showed that MVD at diagnosis and before the 1-st ASCT are important prognostic factors. Probability of duration of CR or VGPR was 63% in group with low MVD before the 1st ASCT compared with 15% in group with high MVD (p<0,02). MVD was revealed to be more powerful prognostic factor for progression free survival (PFS) then CR or VGPR achievement. CONCLUSION. BM angiogenesis is increased in patients with MM. BM MVD is decreased during and after treatment however even after the completion of HDT and ASCT, the MVD is higher then in the normal control group. There is a statistically significant increase of MVD after stem cell mobilization with cyclophosphamide and G-CSF. MVD at the time of diagnosis and before the 1-st ASCT are important prognostic factors for overall-survival and PFS after ASCT. MVD before the 1-st ASCT appears to be a more powerful prognostic factor for PFS then remission rate.

1999 ◽  
Vol 33 (5-6) ◽  
pp. 511-519 ◽  
Author(s):  
Robert Peter Gale ◽  
Rolla Edward Park ◽  
Robert W. Dubois ◽  
Kenneth C. Anderson ◽  
William M. Audeh ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3228-3228
Author(s):  
Elizabeth Berger ◽  
Christopher Seet ◽  
Mala Parthasarathy ◽  
Tulio Rodriguez ◽  
Scott E. Smith ◽  
...  

Abstract Abstract 3228 Poster Board III-165 Introduction Using standard dose G-CSF (10 μg/kg) for stem cell mobilization, 25-40% of patients, deemed to be hard to mobilize based on prior therapy, will not collect sufficient HSC (> 2-2.5 × 106 CD34/kg) to proceed to a prompt autotransplant. Strategies to improve CD34/kg yields have included dose escalating G-CSF up to 30 μg/kg or combining G-CSF and GM-CSF. While dose escalated G-CSF is effective in increasing CD34 yields in normal donors as is the combination of G-CSF and GM-CSF, their comparative value in pre-treated patients has not been tested. To determine the value of these strategies, we performed a randomized comparison of high dose G-CSF (30 μg/kg as 2 doses 12 hours apart), to the combination of simultaneous single daily doses of G-CSF (10 μg/kg) plus GM-CSF (5 μg/kg), to a control group receiving G-CSF at an equivalent total dose of cytokine to the combination arm (15μg/kg) as a single dose. Patients and Methods Patients were eligible if heavily pre-treated, defined as: a minimum of 10 total cycles of combination chemotherapy and two prior regimens, or a total of 6 chemotherapy cycles if the patient also received RT to marrow bearing sites, platinum-based chemotherapy or 2 or more cycles of any BCNU or fludarabine containing regimen. Baseline WBC had to be > 3000/μl, ANC > 1500/μl and a platelets > 100,000/μl. Twelve liter aphereses began on day 5 of mobilization, and continued until ≥ 4 × 106 CD34/kg were collected or a maximum of 5 aphereses. Patients typically proceeded to transplant if they had ≥ 2.5 × 106 CD34/kg collected and were always re-mobilized if they collected < 2.0 × 106 CD34/kg. CD34 subsets (CD34+/CD33- and CD34+/CD38-) were also assessed for the 3 groups to determine if more primitive HSC were mobilized by the 2 novel strategies. The sample size was calculated based as follows: 60% of the control group would collect 2.5 × 106 CD34/kg and this would rise to 90% in one or both study arms. The detection of such differences with a power of 80% and a 2-sided alpha level of 0.025 required a total sample of 120 patients. Results A total of 120 patients were randomized; 119 were eligible. Patient demographics, shown in the Table, were matched among the three groups: The % of patients collecting ≥2.5 × 106 CD34/kg was: standard G: 60%, high dose G: 57% (p = 1.0), G + GM: 41% (p = 0.1). Median CD34 collected in first mobilization were, 3.6 × 106/kg, 3.0 × 106/kg (p = 0.22) and 2.0 × 106/kg (p = 0.05) respectively in a median of 4, 4, and 5 aphereses (p = NS). Re-mobilization rates: standard G; 37.5%, high dose G: 35%; G + GM: 50% (p = NS). Total median CD34 collected from first and any second mobilizations were: standard G: 4.8 × 106/kg, high dose G: 3.9 × 106/kg, and G + GM: 3.5 × 106/kg. One patient in the standard G arm and 3 in high dose G did not proceed to transplant due to poor initial mobilization and progression in 2, and one each for progression or poor mobilization alone. There were no significant differences in median engraftment times: for ANC, 10, 11 and 15 days respectively for the standard G-, high dose G- and G + GM arms and for platelets, 11, 13 and 14 days respectively. The overall survivals @ the median f/u time of 37 months were 59.8%, 61.8% and 48.1% respectively (p = 0.272) for the three groups. The % primitive HSC (CD34+/CD33- and CD34+/CD38-) from the first mobilization were identical in the 3 patient groups. Conclusions We found no advantage to dose escalated G-CSF nor to the combination of G-CSF and GM-CSF to mobilize HSC for autotransplantation in heavily pre-treated patients. We also did not find higher numbers of more primitive CD34 subsets mobilized by these newer strategies. Alternative approaches, e.g. the combination of plerixifor + standard dose G-CSF (Stiff et al: BBMT; 15:249-56, 2009) would appear to be the preferred method of initial HSC mobilization for heavily pre-treated patients. Disclosures Stiff: Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5823-5823
Author(s):  
Ahmad Antar ◽  
Zaher Otrock ◽  
Mohamed Kharfan-Dabaja ◽  
Hussein Abou Ghaddara ◽  
Nabila Kreidieh ◽  
...  

Abstract Introduction: The optimal stem cell mobilization regimen for patients with multiple myeloma (MM) remains undefined. Most transplant centers use either a chemo-mobilization strategy using cyclophosphamide (CY) and granulocyte-colony stimulating factor (G-CSF) or a steady state strategy using G-CSF alone or with plerixafor in case of mobilization failure. However, very few studies compared efficacy, toxicity and cost-effectiveness of stem cell mobilization with cyclophosphamide (CY) and G-CSF versus G-CSF with preemptive plerixafor. In this study, we retrospectively compared our single center experience at the American University of Beirut in 89 MM patients using fractionated high-dose CY and G-CSF as our past preferred chemo-mobilization strategy in MM patients with our new mobilization strategy using G-CSF plus preemptive plerixafor. The change in practice was implemented when plerixafor became available, in order to avoid CY associated toxicity. Patients and methods: Patients in the CY group (n=62) (Table 1) received either fractionated high-dose CY (n=56) (5g/m2 divided in 5 doses of 1g/m2 every 3 hours) or CY at 50mg/kg/day for 2 doses (n=6). G-CSF was started on day +6 of chemotherapy at a fixed dose of 300 µg subcutaneously every 12 hours. All patients in the plerixafor group (n=27) (Table 1) received G-CSF at a fixed dose of 300 µg subcutaneously every 12 hours daily for 4 days. On day 5, if peripheral blood CD34+ was ≥ 20/µl, apheresis was started immediately. Plerixafor (240 µg/kg) was given 7-11 hours before the first apheresis if CD34+ cell count on peripheral blood on day 5 was <20/µl and before the second apheresis if CD34+ cells on the first collect were <3х106/kg. The median number of prior therapies was 1 (range: 1-3) in both groups. Results: Compared with plerixafor, CY use was associated with higher median peak peripheral blood CD34+ counts (35 vs 111 cells/µl, P= 0.000003), and total CD34+ cell yield (7.5 х 106 vs 15.9 х 106 cells/kg, P= 0.003). All patients in both groups collected ≥4x106 CD34+ cells/Kg. Moreover, 60 (96.7%) and 46 (74.2%) patients in the CY group vs 24 (88.8%) and 6 (22%) patients in the plerixafor group collected >6х106 and >10x106 CD34+ cells/kg, respectively (P=0.16; P<0.00001). Only 4 (6.4%) patients required two apheresis sessions in the CY group compared to 11 (40%) in the plerixafor group (P=0.0001). Conversely, CY use was associated with higher frequency of febrile neutropenia (60% vs 0%; P<0.00001), blood transfusions (27% vs 0%; P<0.00001), platelets transfusion (25% vs 0%; P<0.00001) and hospitalizations (64% vs 0%; P<0.00001). No one required intensive level of care and all recovered. Autografting was successfully performed in all patients using high-dose melphalan with a median time from mobilization to the first transplant of 31 days (range: 16-156) in the CY group compared to 13 days (range: 8-40) in the plerixafor group (P=0.027); and median infused CD34+ cells were 7х106/kg (range: 3.1-15.3) versus 5.27 (2.6-7.45), respectively (P=0.002). The average total cost of mobilization using the adjusted costs based on National Social Security Fund (NSSF) prices in Lebanon in the plerixafor group was slightly higher compared with the CY group ($7964 vs $7536; P=0.16). Conclusions: Our data indicate robust stem cell mobilization in MM patients with either fractionated high-dose CY and G-CSF or G-CSF alone with preemptive plerixafor. The chemo-mobilization approach was associated with two-fold stem cell yield, slightly lower cost (including cost of hospitalization) but significantly increased toxicity. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document