Phase I Study to Assess the Safety and Tolerability of AZD1152 In Combination with Low Dose Cytosine Arabinoside In Patients with Acute Myeloid Leukemia (AML)

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 656-656 ◽  
Author(s):  
Hagop M. Kantarjian ◽  
Mikkael A. Sekeres ◽  
Vincent Ribrag ◽  
Philippe Rousselot ◽  
Guillermo Garcia-Manero ◽  
...  

Abstract Abstract 656 Background: Aurora B kinase is a key mitosis regulator that is overexpressed in a range of malignancies, including AML. AZD1152 is a potent selective inhibitor of Aurora B kinase. This ascending dose cohort study was designed to assess the safety and tolerability of AZD1152 in combination with low dose cytosine arabinoside (LDAC), the only agent that has currently demonstrated a survival advantage over palliative care in older patients with AML. Methods: Patients aged ≥60 years with newly diagnosed AML unfit for intensive induction chemotherapy were included. Cohorts of 6 patients received escalating doses of a 7-day continuous iv infusion of AZD1152, at doses of 800 mg up to the monotherapy maximum tolerated dose (MTD) of 1200 mg, in combination with LDAC 20 mg sc injection twice daily for 10 days. AZD1152 and LDAC were administered in 28-day cycles. If 1 or fewer dose-limiting toxicities (DLTs) were observed in a cohort, AZD1152 dose was escalated. A DLT was an adverse event (AE) or laboratory abnormality considered related to AZD1152, which was a Common Terminology Criteria for Adverse Events (CTCAE) grade ≥3 non-hematological toxicity (despite adequate supportive care). If 2 or more of 6 patients had a DLT, the dose was reduced or enrollment was stopped into that cohort. The MTD was defined as the dose at which 0 or 1 of 6 patients experienced a DLT. Following determination, the MTD cohort was expanded to 12 patients. Objective response was evaluated by the investigators using AML International Working Group clinical response criteria. AEs and serious AEs (SAEs) were evaluated according to CTCAE version 3. Blood samples were taken pre-dose and at selected times post dose for 3 cycles to determine levels of AZD1152, its active metabolite AZD1152 hQPA and LDAC. Results: At the data cut-off on 02/08/10 (data validation ongoing), 22 patients had been treated with the combination of LDAC plus AZD1152 (n=6 800 mg; n=13 1000 mg; n=3 1200 mg). Mean age (range) across the 3 cohorts was 71.1 (61–82) years, 14 (64%) were male, 21 were Caucasian and 1 was African American. The mean age of the 800 mg cohort was older (75.2 years) compared with the 1000 mg and 1200 mg cohorts (70.3 and 67.3 years, respectively). At baseline, 8 (36%) patients had de novo AML, and 7 (32%), 2 (9%) and 1 (5%) had AML secondary to myelodysplastic syndrome, myeloproliferative disorder and chemotherapy, respectively. All 22 patients had newly diagnosed AML. All patients received at least 1 cycle of treatment, 10 received ≥2 cycles and 1 received 5 cycles. One patient received an AZD1152 dose reduction (1000 mg to 800 mg) for their second cycle due to a high creatinine level, which was present at pre-dosing. Two patients in the 1200 mg group had DLT episodes of CTCAE grade 3 mucositis. The MTD of AZD1152 in combination with LDAC was defined as 1000 mg. All patients had at least 1 AE, the most common were myelosuppression (febrile neutropenia, anemia and thrombocytopenia in 50%, 36% and 27% of patients, respectively), stomatitis/mucosal inflammation, nausea, diarrhea and infection (each in 45% of patients). The most common grade 3/4 CTCAEs were febrile neutropenia, infection, thrombocytopenia and anemia. There were 3 (13.6%) deaths, 1 in each cohort; 2 were due to SAEs of febrile neutropenia (multiple-organ failure) and hypoxia (fungal pulmonary infection) and 1 was due to an unknown cause. Nine of 21 patients (43%) were reported by the investigators to have had a clinical response (CR + CRi) (Table). Conclusion: The MTD of AZD1152 in combination with LDAC in older patients with newly diagnosed AML was 1000 mg. AZD1152 at a dose of 1000 mg combined with LDAC had an acceptable tolerability profile. Two patients had DLTs of mucositis at the monotherapy MTD of 1200 mg. AEs of febrile neutropenia, thrombocytopenia and anemia were slightly higher than those in patients treated with either agent alone, although many patients experienced these AEs at study entry. The investigator-reported clinical response rate (CR + CRi) was 43%. The development of AZD1152 is continuing with a Phase II study in older patients with AML considered unfit for intensive chemotherapy. Disclosures: Kantarjian: AstraZeneca: Research Funding. Off Label Use: Low-dose cytosine arabinoside is an approved agent for the treatment of patients with AML; this study evaluated low-dose cytosine arabinoside in combination with AZD1152, an investigational agent that inhibits Aurora Kinase B . Sekeres:Celgene Corp: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Ribrag:Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; LFB Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Servier: Research Funding; Celgene: Research Funding; LFB: Research Funding. Owen: AstraZeneca: Employment, Equity Ownership. Stockman:AstraZeneca: Employment, Equity Ownership. Oliver:AstraZeneca: Employment, Equity Ownership.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4070-4070 ◽  
Author(s):  
Ravi Vij ◽  
Craig C. Hofmeister ◽  
Paul G. Richardson ◽  
Sundar Jagannath ◽  
David S. Siegel ◽  
...  

Abstract Abstract 4070 Background: There are currently limited effective treatment options for patients (pts) with RRMM with prior exposure to lenalidomide (LEN), bortezomib (BORT) and chemotherapy. In a multicenter, randomized phase 2 study, POM with or without LoDEX (n=221) was active in RRMM pts who had received ≥2 prior therapies, including LEN and BORT (Richardson PG, et al. Blood 2011;118:abs 634); activity was also observed in those with disease refractory to LEN, BORT, or both (Vij R, et al. J Clin Oncol 2012;30:abs 8016). Here we characterize outcomes in the POM+LoDEX group (n=113) according to the prior treatment exposure. Methods: Pts with RRMM who had received ≥2 prior therapies, including LEN and BORT, and had progressive disease (PD) within 60 days of their last treatment were randomized (1:1 ratio) to POM+LoDEX (POM, 4 mg/day for days 1–21 of a 28-day cycle; LoDex, 40 mg/week) or POM alone. At randomization, pts were stratified by age, prior number of treatments, and prior thalidomide exposure. At progression, pts receiving POM alone could receive POM+LoDEX at investigator's discretion. All pts received thromboprophylaxis (daily low-dose aspirin). The endpoints in this study were progression-free survival (PFS), response rates (using European Bone Marrow Transplantation [EBMT] criteria), duration of response, time to response, overall survival (OS), and safety. Response data according to prior therapy were assessed by investigator assessment. Results: All 113 pts assigned to POM+LoDEX had prior exposure to LEN (100%), BORT (100%), and steroids (100%). Most pts had also received prior alkylator therapy (93%), stem cell transplant (SCT) (73%), and thalidomide (THAL) (68%); 49% had received prior anthracyclines. Regimens immediately prior to study entry included BORT (50%), LEN (39%), cyclophosphamide (13%), THAL (8%), vorinostat (8%), carfilzomib (5%), and melphalan (5%). The median number of exposures to LEN and BORT in prior lines was once (range 1–4) and twice (range 1–6), respectively. The majority of pts (80%) had received >3 prior therapies. The overall response rate (ORR) was 48% and 30% in pts who had received ≤3 and >3 prior therapies, respectively. Of the pts who had ≤3 vs > 3 prior therapies, 9% vs 1% pts achieved complete response (CR), 39% vs 29% pts achieved partial response (PR), 9% vs 12% pts achieved minimal response (MR) and 44% vs 36 % pts achieved stable disease (SD), respectively. ORR was 34% and appeared similar regardless of prior exposure to alkylators (33%), anthracyclines (35%), SCT (35%), or THAL (35%). Median duration of response was also similar in pts who had received prior alkylators (8.4 mos), anthracyclines (10.1 mos), SCT (7.7 mos), and THAL (7.7 mos). Of the 69 pts who had a best response of SD or PD to their last prior antimyeloma therapy, 21 pts (12 SD and 9 PD) achieved a PR and 3 pts (1 SD and 2 PD) achieved a CR with POM+LoDEX treatment. Responding pts had longer time to progression (TTP; 11.1 mos) with POM+LoDex compared with the TTP (4.4 mos) observed with their last antimyeloma regimen prior to study. The most common grade 3–4 adverse events in the POM+LoDEX group were neutropenia (41%), anemia (22%), pneumonia (22%), thrombocytopenia (19%), and fatigue (14%). The incidence of at least 1 grade 3–4 adverse event was 100% in pts with ≤ 3 prior therapies, and 88% in pts with >3 therapies. Conclusions: The combination of POM+LoDEX has demonstrated an ORR of 34% in heavily pretreated pts with RRMM who have been previously exposed to LEN, BORT, steroids, and other treatments. Early treatment of POM+LoDEX (≤3 prior therapies) achieved better ORR (48%) compared with pts who received POM+LoDex later (>3 prior therapies; ORR, 30%). Disclosures: Vij: Onyx: Consultancy, Research Funding; Millennium Pharma: Speakers Bureau; Celgene: Consultancy, Research Funding, Speakers Bureau. Off Label Use: Pomalidomide is an investigational drug and is not approved for the treatment of patients with any condition. Hofmeister:Celgene: Advisory Board Other, Honoraria. Richardson:Celgene, Millennium, Johnson & Johnson: Advisory Board Other. Jagannath:Onyx Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck Sharp & Dohme: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millennium Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Siegel:Onyx: Advisory Board, Advisory Board Other, Honoraria, Speakers Bureau; Millennium Pharma: Advisory Board, Advisory Board Other, Honoraria, Speakers Bureau; Celgene: Advisory Board Other, Honoraria, Speakers Bureau; Merck: Advisory Board, Advisory Board Other, Honoraria, Speakers Bureau. Baz:Celgene, Millennium, Bristol Myers Squibb, Novartis: Research Funding. Chen:Celgene: Employment, Equity Ownership. Zaki:Celgene: Employment, Equity Ownership. Larkins:Celgene: Employment, Equity Ownership. Anderson:Acetylon, Oncopep: Scientific Founder, Scientific Founder Other; Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3768-3768 ◽  
Author(s):  
Richard A. Larson ◽  
Udomsak Bunworasate ◽  
Anna G. Turkina ◽  
Stuart L. Goldberg ◽  
Pedro Dorlhiac-Llacer ◽  
...  

Abstract Abstract 3768 Background: Data from the phase 3, randomized multicenter ENESTnd trial have demonstrated the superiority of nilotinib over imatinib after 24 months (mo) of follow-up, with significantly higher rates of complete cytogenetic response (CCyR) and major molecular response (MMR), and significantly lower rates of progression to accelerated phase/blast crisis (AP/BC). The current subanalysis evaluated the efficacy and safety of nilotinib 300 mg twice daily (Nil300) and nilotinib 400 mg twice daily (Nil400) in older (≥ 65 years [yrs] at study entry) patients (pts) with newly diagnosed chronic myeloid leukemia (CML) in chronic phase (CP) with a minimum follow-up of 24 mo. Methods: In ENESTnd, 846 pts stratified by Sokal risk score were randomized 1:1:1 to Nil300 (n = 282), Nil400 (n = 281), or imatinib 400 mg once daily (n = 283). Pts with impaired cardiac function or ECOG performance status > 2 were excluded. Rates of CCyR and MMR by 24 mo, progression to AP/BC on treatment, and safety were evaluated according to age group (< 65 vs ≥ 65 yrs) in the 2 nilotinib arms. Safety data are reported for any pt who received ≥ 1 dose of nilotinib (n = 279, Nil300; n = 277, Nil400). Results: 36 pts (13%) and 28 pts (10%) were ≥ 65 yrs old in the Nil300 and Nil400 arms, respectively. Of the pts aged ≥ 65 yrs, 51/64 (80%) had an ECOG performance status of 0 at baseline and 60/64 (94%) had intermediate or high Sokal risk scores. Of the older pts, 8 (22%) on Nil300 and 6 (21%) on Nil400 had type 2 diabetes at baseline. CCyR rates by 24 mo were 83% and 68% among older pts treated with Nil300 and Nil400, respectively, and 87% for pts aged < 65 yrs in each nilotinib arm. By 24 mo, MMR was achieved by 72% and 61% of older pts on Nil300 and Nil400, respectively; in pts aged < 65 yrs, the respective rates were 71% and 67%. All 5 pts who progressed to AP/BC on treatment (2 on Nil300 and 3 on Nil400) were aged < 65 yrs. The frequency of grade 3/4 hematologic adverse events (AEs) was low in older pts; no pts had grade 3/4 neutropenia and only 1 older pt reported grade 3/4 thrombocytopenia in each nilotinib arm (Table). Transient, asymptomatic lipase elevations were reported in 11% and 16% of older pts treated with Nil300 and Nil400, and 7% of younger pts in each arm. Hyperglycemia occurred in 23% and 16% of older pts on Nil300 and Nil400, respectively, and 4% of younger pts in each arm; regardless of age, no pt discontinued study due to hyperglycemia. Among the 12 older pts with grade 3/4 hyperglycemia (8 on Nil300; 4 on Nil400), 9 pts had type 2 diabetes at baseline. There were no QTcF increases of > 60 msec from baseline in older pts and 3 in nilotinib-treated pts < 65 yrs old (1 on Nil300; 2 on Nil400). QTcF prolongation of > 500 msec did not occur in any pt treated with nilotinib on study. Periodic echocardiograms were done, and there were no decreases of > 15% in left ventricular ejection fraction from baseline in any pt treated with nilotinib on study. There were 4 cases of ischemic heart disease reported in older pts (1/35 [3%] on Nil300; 3/25 [12%] on Nil400) and 7 cases in pts < 65 yrs of age (4/244 [2%] on Nil300; 3/252 [1%] on Nil400). No sudden deaths occurred on study. Discontinuation occurred in approximately 25% of older and younger pts with Nil300, of which, 6% and 9%, respectively, were due to AEs/lab abnormalities. Discontinuation from study with Nil400 was 46% in older pts and 19% in younger pts; of which, 36% and 10% were due to AEs/lab abnormalities. Conclusions: Older pts treated with nilotinib demonstrated high rates of cytogenetic and molecular responses and low rates of progression. Nilotinib was generally well tolerated by older pts. In older pts, Nil300 had numerically higher rates of CCyR and MMR and was generally better tolerated (as evidenced by fewer AEs and discontinuations) vs Nil400. These data support the use of Nil300 in older pts with newly diagnosed CML-CP. Disclosures: Larson: Novartis Pharmaceuticals: Consultancy, Honoraria, Research Funding. Bunworasate:Novartis Pharmaceutical: Research Funding. Turkina:Novartis: Consultancy, Honoraria; BMS: Honoraria. Goldberg:Bristol Myers Squibb: Honoraria, Research Funding, Speakers Bureau; Novartis Pharmaceutical: Honoraria, Research Funding, Speakers Bureau; Ariad: Research Funding. Dorlhiac-Llacer:Bristol Myers Squibb: Research Funding; Novartis: Research Funding. Kantarjian:Novartis: Consultancy; Novartis: Research Funding; Pfizer: Research Funding; BMS: Research Funding. Saglio:Bristol-Myers Squibb: Consultancy, Speakers Bureau; Novartis Pharmaceutical: Consultancy, Speakers Bureau; Pfizer: Consultancy. Hochhaus:Ariad: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Novartis Pharmaceutical: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding. Hoenekopp:Novartis Pharmaceutical: Employment, Equity Ownership. Blakesley:Novartis Pharmaceutical: Employment. Yu:Novartis: Employment, Equity Ownership. Gallagher:Novartis: Employment, Equity Ownership. Clark:Bristol Myers Squibb: Honoraria, Research Funding; Novartis Pharmaceutical: Honoraria, Research Funding, Speakers Bureau. Hughes:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 896-896
Author(s):  
Carlo Gambacorti-Passerini ◽  
Michael W. Deininger ◽  
Michael J. Mauro ◽  
Charles Chuah ◽  
Dong-Wook Kim ◽  
...  

Abstract Introduction: Bosutinib is a potent SRC/ABL tyrosine kinase inhibitor approved for treatment of adults with CML resistant or intolerant to prior therapy. Here we compare the efficacy and safety of first-line bosutinib versus imatinib in patients with chronic phase (CP) CML enrolled in BFORE after ≥18 months of follow-up. Methods: BFORE (NCT02130557) is an ongoing, multinational, open label phase 3 study that randomized 536 patients 1:1 to 400 mg QD bosutinib (n=268) or 400 mg QD imatinib (n=268 [3 not treated]). The prespecified primary endpoint was major molecular response (MMR) rate at 12 months in the modified intent-to-treat (mITT) population, defined as Philadelphia chromosome‒positive (Ph+) patients with e13a2/e14a2 transcripts, and excluding Ph- patients and those with unknown Ph status and/or BCR-ABL transcript type (mITT: BOS, n=246; IM, n=241). Efficacy results refer to the mITT population unless otherwise noted. Results: MMR rate was higher with bosutinib versus imatinib at 18 months (56.9% vs 47.7%; P=0.042). Among all randomized patients (ITT) 18-month MMR rates were higher for bosutinib (56.7% vs 46.6%; P &lt;0.02). Earlier analyses (Table) showed complete cytogenetic response (CCyR) rate by 12 months (77.2% vs 66.4%; P=0.0075) was significantly higher with bosutinib versus imatinib. Rates of BCR-ABL1 transcript ratio ≤10% (International Scale) at 3 months (75.2% vs 57.3%), as well as MR4 at 12 months (20.7% vs 12.0%) and MR4.5 at 12 months (8.1% vs 3.3%), were all higher with bosutinib versus imatinib (all P &lt;0.025). By comparison at 18 months, rates of MR4 (24.4% vs 18.3%) and MR4.5 (11.4% vs 7.1%) were consistent with this trend. Also after ≥18 months follow-up, time to MMR (hazard ratio=1.36, based on cumulative incidence; P=0.0079) and time to CCyR (hazard ratio=1.33; P=0.0049) were shorter for bosutinib (Figure). Cumulative incidence of transformation to accelerated/blast phase disease at 18 months was 2.0% and 2.9% for bosutinb and imatinib, respectively, of which 2 bosutinib and 4 imatinib patients discontinued treatment due to transformation. Additional treatment discontinuations due to suboptimal response/treatment failure occurred in 11 (4.1%) and 35 (13.2%) of bosutinib and imatinib patients, respectively. Dose increases happened in 20% of bosutinib-treated and 31% of imatinib-treated pts There were 2 deaths and 9 deaths in the bosutinib and imatinib arms, respectively. One patient taking bosutinib died within 28 days of last dose, while 4 patients taking imatinib died with that period from last dose. Overall survival at 18 months was 99.6% vs. 96.6% for bosutinib and imatinib groups, respectively. Grade ≥3 diarrhea (8.2% vs 0.8%) and increased alanine (20.9% vs 1.5%) and aspartate (10.1% vs 1.9%) aminotransferase levels were more frequent with bosutinib. Cardiovascular, peripheral vascular, and cerebrovascular events were infrequent in both arms (3.4%, 1.9%, and 0.4% bosutinib vs 0.0%, 1.1%, and 0.8% imatinib; grade ≥3: 1.5%, 0%, and 0.4% vs 0%, 0%, and 0.4%). There were no deaths in the bosutinib arm and 1 death in the imatinib arm due to treatment-emergent vascular events. Treatment discontinuations due to drug-related toxicity occurred in 15.3% and 9.4% of bosutinib and imatinib patients, respectively. Conclusion: After 18 months of follow-up,the MMR benefit seen with bosutinib over imatinib was sustained. These results are in line with observations at 12 months where patients taking bosutinib had significantly higher response rates (primary endpoint) and achieved responses sooner than those on imatinib. Safety data were consistent with the known safety profiles. These results suggest that bosutinib may be an important treatment option for patients with newly diagnosed CP CML. Disclosures Gambacorti-Passerini: Pfizer: Consultancy, Honoraria, Research Funding; BMS: Consultancy. Deininger: Novartis: Consultancy, Research Funding; Pfizer: Consultancy; Celgene: Research Funding; BMS: Consultancy, Research Funding; Gilead: Research Funding; ARIAD: Consultancy; Ariad Pharmaceuticals, Bristol Myers Squibb, CTI BioPharma Corp, Gilead, Incyte, Novartis, Pfizer, Celgene, Blue Print, Galena: Consultancy, Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy. Mauro: Bristol-Myers Squibb: Consultancy. Chuah: Avillion: Honoraria; Chiltern: Honoraria; BMS: Honoraria, Other: Travel; Novartis: Honoraria. Kim: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Il-Yang: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Milojkovic: Novartis: Consultancy, Honoraria; Incyte: Honoraria, Speakers Bureau; Pfizer: Consultancy, Honoraria; BMS: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria. le Coutre: BMS: Honoraria; Pfizer: Honoraria; Incyte: Honoraria; Novartis: Honoraria, Research Funding; ARIAD: Honoraria. García Gutiérrez: Pfizer: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Incyte: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Crescenzo: Pfizer: Employment, Equity Ownership. Leip: Pfizer: Employment, Equity Ownership. Bardy-Bouxin: Pfizer: Employment, Equity Ownership. Hochhaus: Novartis: Research Funding; Pfizer: Research Funding; Incyte: Research Funding; Ariad: Research Funding; MSD: Research Funding; BMS: Research Funding. Brümmendorf: Pfizer: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Cortes: Sun Pharma: Research Funding; ARIAD: Consultancy, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; BMS: Consultancy, Research Funding; ImmunoGen: Consultancy, Research Funding; Teva: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1969-1969 ◽  
Author(s):  
Paul G. Richardson ◽  
Craig C. Hofmeister ◽  
David Siegel ◽  
Sagar Lonial ◽  
Jacob P. Laubach ◽  
...  

Abstract Background The combination of the immunomodulatory drug lenalidomide (LEN) with the proteasome inhibitor bortezomib (BORT) and dexamethasone (DEX) has demonstrated substantial preclinical and clinical activity in patients with MM (Richardson PG, et al. Blood. 2010; Kumar S, et al. Blood. 2012). Pomalidomide (POM), a distinct immunomodulatory agent, has been approved by the US FDA for patients with RRMM with ≥ 2 prior therapies, including LEN and BORT, and progressive disease (PD) on or within 60 days of completion of the last line of treatment (Tx). POM with low-dose DEX (LoDEX) has demonstrated efficacy in patients with RRMM treated with prior LEN and BORT (San Miguel, EHA 2013; Leleu X, et al. Blood. 2013; Richardson PG, et al. Blood 2013; Lacy MQ, et al. Blood. 2011). MM-005 was designed to identify the optimal dose of POM-BORT-DEX (PVD) combination Tx for a phase 3 trial comparing PVD vs BORT + LoDEX (VD) in patients with RRMM (MM-007). Methods Eligible patients had RRMM with 1-4 prior lines of Tx including ≥ 2 consecutive cycles of LEN and a proteasome inhibitor. Patients must have been refractory to LEN (PD during or within 60 days of LEN Tx) but not refractory to BORT (at 1.3 mg/m2 twice weekly). The maximum tolerated dose (MTD) was determined using a 3 + 3 design in 5 cohorts. Each cohort received 21-day cycles of POM (1-4 mg/day on days 1-14); intravenous BORT (1-1.3 mg/m2 on days 1, 4, 8, and 11); and LoDEX (20 mg/day on days 1-2, 4-5, 8-9, and 11-12; patients aged > 75 years received 10 mg/day on days 1-2, 4-5, 8-9, 11-12). The study protocol was revised to include a 6-patient cohort receiving subcutaneous BORT. Thromboprophylaxis was given to all patients as either aspirin or low-molecular-weight heparin. Once established, an expansion cohort was enrolled at the MTD. Tx was continued until PD or unacceptable toxicity. Dose-limiting toxicities (DLTs) were assessed during cycle 1. MTD was the primary endpoint; secondary endpoints included safety, overall response rate (ORR; ≥ partial response), duration of response, and time to response (TTR). Results A total of 28 patients across all Tx cohorts is planned. As of April 2013, 22 patients have been enrolled, 21 patients were evaluable for baseline characteristics and safety, and 20 patients were evaluable for response. The median age was 57 years (range, 36-75 years). The median number of prior Tx lines was 2 (range, 1-4). All patients were refractory to LEN and had received prior BORT. 67% of patients had progressed on LEN as their last prior Tx and an additional 2 patients never responded to LEN. At the time of analysis, 14 of 22 (64%) patients remain on study. The primary reason for discontinuation was PD (27%). No DLTs have been observed during cycle 1 at any dose level; thus, the MTD/maximum planned PVD dose is POM 4 mg (days 1-14); intravenous BORT 1.3 mg/m2 (days 1, 4, 8, and 11 for cycles 1-8; days 1 and 8 for cycles 9+); and LoDEX 20 mg/day (days 1-2, 4-5, 8-9, and 11-12 for cycles 1-8; days 1-2, 8-9 for cycles 9+). The most common grade 3/4 adverse events (AEs) were neutropenia (29%) and thrombocytopenia (19%). With thromboprophylaxis, no deep vein thrombosis was observed. Despite 62% of patients having a history of peripheral neuropathy (PN) at baseline, only 29% developed grade 1 and 14% developed grade 2 PN; no grade 3/4 PN was observed. Only 1 patient has discontinued due to AE (Tx-unrelated metastatic pancreatic cancer). Thus far, the ORR is 75% (15 of 20 evaluable), 30% achieving very good partial response (VGPR) or better (including 1 patient in stringent complete response). Responses were rapid (median TTR of 1 cycle [range 1-3]). Many responses are ongoing and may improve with longer follow-up. Responses were also observed in patients with adverse cytogenetics. Updated and pharmacokinetic data on all 28 patients are planned for presentation at the meeting. Conclusions PVD was generally well tolerated in this population of LEN-refractory and BORT-exposed patients with RRMM, with no DLTs and no discontinuations due to Tx-related AEs to date. PVD had promising activity in this population of LEN-refractory and BORT-exposed RRMM pts with an ORR of 75% and 30% ≥ VGPR. The maximum planned dose of POM 4 mg/day on days 1-14; BORT 1.3 mg/m2 on days 1, 4, 8, and 11; and LoDEX 20 mg on days 1-2, 4-5, 8-9, and 11-12 (21-day cycles) has been incorporated into the ongoing MM-007 randomized, prospective phase 3 trial comparing PVD with VD in patients with RRMM (N = 782). Disclosures: Richardson: Johnson & Johnson: Membership on an entity’s Board of Directors or advisory committees; Millennium: Membership on an entity’s Board of Directors or advisory committees; Celgene: Membership on an entity’s Board of Directors or advisory committees. Off Label Use: POM is approved in the US but not in Europe. Hofmeister:Celgene Corporation: Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Siegel:Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Lonial:Sanofi: Consultancy; BMS: Consultancy; Novartis: Consultancy; Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy. Vesole:Millennium: Honoraria; Onyx: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Raje:Millennium: Consultancy; Onyx: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Acetylon: Research Funding; Eli Lilly: Research Funding. Zaki:Celgene: Employment, Equity Ownership. Hua:Celgene: Employment, Equity Ownership. Li:Celgene Corporation: Employment, Equity Ownership. Shah:Celgene: Employment, Equity Ownership. Wang:Celgene: Employment, Equity Ownership. Anderson:Acetylon: Equity Ownership; Gilead: Consultancy; Sanofi Aventis: Consultancy; Onyx: Consultancy; Celgene: Consultancy; Oncopop: Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3129-3129
Author(s):  
Hans C. Lee ◽  
Sikander Ailawadhi ◽  
Cristina Gasparetto ◽  
Sundar Jagannath ◽  
Robert M. Rifkin ◽  
...  

Background: Multiple myeloma (MM) is common among the elderly, with 35% of patients (pts) diagnosed being aged ≥75 years (y). With increasing overall life expectancy, the incidence and prevalence of newly diagnosed and previously treated MM patients ≥80 y is expected to increase over time. Because elderly pts are often excluded from clinical trials, data focused on their treatment patterns and clinical outcomes are lacking. The Connect® MM Registry (NCT01081028) is a large, US, multicenter, prospective observational cohort study of pts with newly diagnosed MM (NDMM) designed to examine real-world diagnostic patterns, treatment patterns, clinical outcomes, and health-related quality of life patient-reported outcomes. This analysis reviews treatment patterns and outcomes in elderly pts from the Connect MM Registry. Methods: Pts enrolled in the Connect MM registry at 250 community, academic, and government sites were included in this analysis. Eligible pts were adults aged ≥18 y with symptomatic MM diagnosed ≤2 months before enrollment, as defined by International Myeloma Working Group criteria; no exclusion criteria were applied. For this analysis, pts were categorized into 4 age groups: <65, 65 to 74, 75 to 84, and ≥85 y. Pts were followed from time of enrollment to the earliest of disease progression (or death), loss to follow-up, or data cutoff date of February 7, 2019. Descriptive statistics were used for baseline characteristics and treatment regimens. Survival outcomes were analyzed using Cox regression. Time to progression (TTP) analysis excluded causes of death not related to MM. Results: Of 3011 pts enrolled (median age 67 y), 132 (4%) were aged ≥85 y, and 615 (20%) were aged 75-84 y at baseline. More pts aged ≥85 y had poor prognostic factors such as ISS stage III disease and reduced hemoglobin (<10 g/dL or >2 g/dL <LLN) compared with other age groups, although no notable differences between creatinine and calcium levels were observed across age groups (Table). A lower proportion of elderly pts (75-84 and ≥85 y) received triplet regimens as frontline therapy. More elderly pts received a single novel agent, whereas use of 2 novel agents was more common in younger pts (Table). The most common frontline regimens among elderly pts were bortezomib (V) + dexamethasone (D), followed by lenalidomide (R) + D, whereas those among younger pts included RVD, followed by VD and CyBorD (Table). No pt aged ≥85 y, and 4% of pts aged 75-84 y received high-dose chemotherapy and autologous stem cell transplant (vs 61% in the <65 y and 37% in the 65-74 y age group). The most common maintenance therapy was RD in pts ≥85 y (although the use was low) and R alone in other age groups (Table). In the ≥85 y group, 27%, 10%, and 4% of pts entered 2L, 3L, and 4L treatments respectively, vs 43%, 23%, and 13% in the <65 y group. Progression-free survival was significantly shorter in the ≥85 y age group vs the 75-84 y age group (P=0.003), 65-74 y age group (P<0.001), and <65 y age group (P<0.001; Fig.1). TTP was significantly shorter in the ≥85 y group vs the <65 y group (P=0.020); however, TTP was similar among the 65-74 y, 75-84 y, and ≥85 y cohorts (Fig. 2). Overall survival was significantly shorter in the ≥85 y group vs the 75-84 y, 65-74 y, and <65 y groups (all P<0.001; Fig. 3). The mortality rate was lowest (46%) during first-line treatment (1L) in pts aged ≥85 y (mainly attributed to MM progression) and increased in 2L and 3L (47% and 54%, respectively); a similar trend was observed in the younger age groups. The main cause of death was MM progression (29% in the ≥85 y vs 16% in the <65 y group). Other notable causes of death in the ≥85 y group included cardiac failure (5% vs 2% in <65 y group) and pneumonia (5% vs 1% in <65 y group). Conclusions: In this analysis, elderly pts received similar types of frontline and maintenance regimens as younger pts, although proportions varied with decreased use of triplet regimens with age. Considering similarities in TTP across the 65-74 y, 75-84 y, and ≥85 y cohorts, these real-world data support active treatment and aggressive supportive care of elderly symptomatic pts, including with novel agents. Additionally, further clinical studies specific to elderly patients with MM should be explored. Disclosures Lee: Amgen: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Ailawadhi:Janssen: Consultancy, Research Funding; Takeda: Consultancy; Pharmacyclics: Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy; Cellectar: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Jagannath:AbbVie: Consultancy; Merck & Co.: Consultancy; Bristol-Myers Squibb: Consultancy; Karyopharm Therapeutics: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy. Rifkin:Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Durie:Amgen, Celgene, Johnson & Johnson, and Takeda: Consultancy. Narang:Celgene: Speakers Bureau. Terebelo:Celgene: Honoraria; Jannsen: Speakers Bureau; Newland Medical Asociates: Employment. Toomey:Celgene: Consultancy. Hardin:Celgene: Membership on an entity's Board of Directors or advisory committees. Wagner:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; American Cancer Society: Other: Section editor, Cancer journal. Omel:Celgene, Takeda, Janssen: Other: Patient Advisory Committees. Srinivasan:Celgene: Employment, Equity Ownership. Liu:TechData: Consultancy. Dhalla:Celgene: Employment. Agarwal:Celgene Corporation: Employment, Equity Ownership. Abonour:BMS: Consultancy; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 390-390 ◽  
Author(s):  
Mark A. Schroeder ◽  
H. Jean Khoury ◽  
Madan Jagasia ◽  
Haris Ali ◽  
Gary J. Schiller ◽  
...  

Abstract Background: Corticosteroids are considered standard first-line systemic therapy for patients with aGVHD, but this approach is effective in only approximately half of all cases. For patients who progress or do not respond to corticosteroids, no specific agent has been identified as standard, and regimens are typically selected based on investigator experience and patient co-morbidities. In preclinical models, JAK inhibition has been shown to impair production of cytokines as well as the differentiation and trafficking of T cells implicated in the pathogenesis of aGVHD. Retrospective studies have suggested that JAK1/JAK2 inhibition with ruxolitinib treatment provides clinical benefit in patients with steroid-refractory GVHD (Zeiser et al, Leukemia 2015;29:2062-2068). Herein, we report preliminary safety results from a prospective randomized, parallel-cohort, open-label phase 1 trial evaluating the potent and selective JAK 1 inhibitor INCB039110 in patients with aGVHD. Methods: Male or female patients 18 years or older who underwent their first allo-hematopoietic stem cell transplant (HSCT) from any donor source and developed grades IIB-IVD aGVHD were eligible for the study. Patients were randomized 1:1 to either a 200 or 300 mg oral daily dose of INCB039110 in combination with corticosteroids, and were stratified based on prior treatment status (treatment-naive [TN] versus steroid-refractory [SR]). The primary endpoint of the study was safety and tolerability; secondary endpoints included overall response rate at Days 14, 28, 56, and 100, non-relapse mortality, and pharmacokinetic (PK) evaluations. Patients were assessed through Day 28 for dose-limiting toxicities (DLTs) and response. A Bayesian approach was used for continuous monitoring of DLTs from Days 1-28. Treatment continued until GVHD progression, unacceptable toxicity, or withdrawal from the study. Acute GVHD was graded according to MN-CIBMTR criteria; adverse events (AEs) were graded according to NCICTCAE v 4.03. Results: Between January and June 2016, 31 patients (TN, n=14; SR, n= 17) were randomized. As of July 25, 2016, data were available from 30 patients who received an oral daily dose of 200 mg (n=14) or 300 mg (n=16) INCB039110 in combination with 2 mg/kg methylprednisolone (or equivalent dose of prednisone). The median durations of treatment were 60.8 days and 56.5 days for patients receiving a daily dose of 200 mg and 300 mg INCB039110, respectively. One DLT of Grade 3 thrombocytopenia was reported. The most frequently reported AEs included thrombocytopenia/platelet count decrease (26.7%), diarrhea (23.3%), peripheral edema (20%), fatigue (16.7%), and hyperglycemia (16.7%). Grade 3 or 4 AEs occurred in 77% of patients and with similar frequency across dose groups and included cytomegalovirus infections (n=3), gastrointestinal hemorrhage (n=3), and sepsis (n=3). Five patients had AEs leading to a fatal outcome, including multi-organ failure (n=2), sepsis (n=1), disease progression (n=1), and bibasilar atelectasis, cardiopulmonary arrest, and respiratory distress (n=1); none of the fatal events was attributed to INCB039110. Efficacy and PK evaluations are ongoing and will be updated at the time of presentation. Conclusion: The oral, selective JAK1 inhibitor INCB039110 can be given safely to steroid-naive or steroid-refractory aGVHD patients. The safety profile was generally consistent in both dose groups. Biomarker evaluation, PK, and cellular phenotyping studies are ongoing. The recommended phase 2 dose will be selected and reported based on PK studies and final safety data. Disclosures Schroeder: Incyte Corporation: Honoraria, Research Funding. Khoury:Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jagasia:Incyte Corporation: Research Funding; Therakos: Research Funding; Janssen: Research Funding. Ali:Incyte Corporation: Research Funding. Schiller:Incyte Corporation: Research Funding. Arbushites:Incyte Corporation: Employment, Equity Ownership. Delaite:Incyte Corporation: Employment, Equity Ownership. Yan:Incyte Corporation: Employment, Equity Ownership. Rhein:Incyte Corporation: Employment, Equity Ownership. Perales:Merck: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte Corporation: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Chen:Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. DiPersio:Incyte Corporation: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 814-814 ◽  
Author(s):  
Paul G. Richardson ◽  
Melissa Alsina ◽  
Donna M. Weber ◽  
Steven E. Coutre ◽  
Sagar Lonial ◽  
...  

Abstract Abstract 814FN2 Background: Patients with refractory multiple myeloma (MM) have limited treatment options and an extremely poor prognosis. A recent study of patients who were refractory to bortezomib and were relapsed following, refractory to or ineligible to receive an immunomodulatory drug (IMiD, thalidomide or lenalidomide) demonstrated a median event-free survival of only 5 months (Kumar S et al, Leukemia, 2011). Panobinostat is an oral pan-deacetylase inhibitor (pan-DACi) that increases acetylation of proteins involved in multiple oncogenic pathways. Preclinical studies have demonstrated synergistic anti-myeloma activity of the combination of panobinostat and bortezomib through dual inhibition of the aggresome and proteasome pathways. In a phase I study (B2207) of patients with relapsed or relapsed/refractory MM treated with panobinostat + bortezomib, clinical responses (≥ minimal response [MR]) were observed in 65% of patients, including in patients with bortezomib-refractory disease. PANORAMA 2 seeks to expand upon these preliminary results and seeks to determine whether panobinostat can sensitize resistant patients to a bortezomib-containing therapeutic regimen. Methods: PANORAMA 2 is a single arm, phase II study of panobinostat + bortezomib + dexamethasone in patients with bortezomib-refractory MM. Patients with relapsed and bortezomib-refractory MM (≥ 2 prior lines of therapy including an IMiD and who had progressed on or within 60 days of the last bortezomib-based therapy) are treated in 2 phases. Treatment phase 1 consists of 8 three-week cycles of oral panobinostat (20 mg days 1, 3, 5, 8, 10, 12) + intravenous bortezomib (1.3 mg/m2 days 1, 4, 8, 11) + oral dexamethasone (20 mg on day of and after bortezomib). Patients demonstrating clinical benefit (≥ stable disease) can proceed to treatment phase 2, consisting of 4 six-week cycles of panobinostat (20 mg TIW 2 weeks on 1 week off, and repeat) + bortezomib (1.3 mg/m2 days 1, 8, 22, 29) + dexamethasone (20 mg on day of and after bortezomib). The primary endpoint is overall response (≥ partial response [PR]), as defined by the European Group of Blood and Marrow Transplantation 1998 criteria, in the first 8 cycles of treatment phase 1. A Simon 2-stage design is used to test the primary endpoint where ≥ 4 responses (≥ PR) in 24 patients are needed in stage 1 in order to proceed to stage 2, where ≥ 9 responses in all patients (N = 47) are required to reject the null hypothesis (overall response rate ≤ 10%). Results: A sufficient number of responses ≥ PR were observed in stage 1 to allow for enrollment to continue to stage 2. As of 15 July 2011, 53 patients with bortezomib-refractory MM were enrolled. Safety and demographic data were available for 48 patients. The median age was 61 (41–88) years. Patients were heavily pretreated, with a median of 4 (2–14) prior regimens, and most patients (69%) received prior autologous stem cell transplant. Efficacy data were available for 44 patients. At the time of this analysis, 9 patients achieved ≥ PR (2 near CR [nCR] and 7 PR) as best overall response, and an additional 7 patients achieved an MR. Responders exhibited a long duration on therapy, and, to date, 8 patients have proceeded to treatment phase 2. The 2 patients with nCR have received ≥ 10 cycles of treatment (duration of therapy 190 and 253 days). Four patients who achieved PR have received ≥ 9 cycles (duration of therapy 155–225 days). Updated response data will be presented. Common adverse events (AEs) of any grade included, fatigue (52%), diarrhea (41%), thrombocytopenia (38%), nausea (38%), and anemia (21%). Gastrointestinal AEs were generally mild, with a relatively low incidence of grade 3/4 events. Grade 3/4 AEs were generally hematologic in nature, with grade 3/4 thrombocytopenia, anemia, and neutropenia reported in 38%, 12%, and 10% of patients, respectively. Other common nonhematologic grade 3/4 AEs included fatigue (10%) and pneumonia (10%). Of note, to date, a relatively low rate of peripheral neuropathy (17%) has been observed. No grade 3/4 peripheral neuropathy has been observed. Conclusions: The combination of panobinostat and bortezomib is a promising treatment for patients with bortezomib-refractory MM. These data, along with forthcoming data from the phase III study of panobinostat/placebo + bortezomib + dexamethasone in patients with relapsed MM (PANORAMA 1), will further define the potential role of panobinostat in the treatment of patients with MM. Disclosures: Richardson: Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Alsina:Novartis: Research Funding; Celgene: Research Funding; Ortho Biotech: Research Funding; Onyx: Research Funding; Millennium: Consultancy, Research Funding. Weber:Millennium: Honoraria; Celgene: Honoraria, Research Funding; Novartis: Research Funding. Lonial:Millennium: Consultancy; Celgene: Consultancy; Merck: Consultancy; Onyx: Consultancy; BMS: Consultancy; Novartis: Consultancy. Gasparetto:Millennium: Speakers Bureau. Warsi:Novartis: Employment, Equity Ownership. Ondovik:Novartis: Employment, Equity Ownership. Mukhopadhyay:Novartis: Employment, Equity Ownership. Snodgrass:Novartis: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 801-801 ◽  
Author(s):  
Francisco Cervantes ◽  
Jean-Jacques Kiladjian ◽  
Dietger Niederwieser ◽  
Andres Sirulnik ◽  
Viktoriya Stalbovskaya ◽  
...  

Abstract Abstract 801 Background: Ruxolitinib is a potent JAK1 & 2 inhibitor that has demonstrated superiority over traditional therapies for the treatment of MF. In the two phase 3 COMFORT studies, ruxolitinib demonstrated rapid and durable reductions in splenomegaly and improved MF-related symptoms and quality of life. COMFORT-II is a randomized, open-label study evaluating ruxolitinib versus BAT in patients (pts) with MF. The primary and key secondary endpoints were both met: the proportion of pts achieving a response (defined as a ≥ 35% reduction in spleen volume) at wk 48 (ruxolitinib, 28.5%; BAT, 0%; P < .0001) and 24 (31.9% and 0%; P < .0001), respectively. The present analyses update the efficacy and safety findings of COMFORT-II (median follow-up, 112 wk). Methods: In COMFORT-II, 219 pts with intermediate-2 or high-risk MF and splenomegaly were randomized (2:1) to receive ruxolitinib (15 or 20 mg bid, based on baseline platelet count [100-200 × 109/L or > 200 × 109/L, respectively]) or BAT. Efficacy results are based on an intention-to-treat analysis; a loss of spleen response was defined as a > 25% increase in spleen volume over on-study nadir that is no longer a ≥ 35% reduction from baseline. Overall survival was estimated using the Kaplan-Meier method. Results: The median follow-up was 112 wk (ruxolitinib, 113; BAT, 108), and the median duration of exposure 83.3 wk (ruxolitinib, 111.4 [randomized and extension phases]; BAT, 45.1 [randomized treatment only]). Because the core study has completed, all pts have either entered the extension phase or discontinued from the study. The primary reasons for discontinuation were adverse events (AEs; ruxolitinib, 11.6%; BAT, 6.8%), consent withdrawal (4.1% and 12.3%), and disease progression (2.7% and 5.5%). Overall, 72.6% of pts (106/146) in the ruxolitinib arm and 61.6% (45/73) in the BAT arm entered the extension phase to receive ruxolitinib, and 55.5% (81/146) of those originally randomized to ruxolitinib remained on treatment at the time of this analysis. The primary reasons for discontinuation from the extension phase were progressive disease (8.2%), AEs (2.1%), and other (4.1%). Overall, 70 pts (48.3%) treated with ruxolitinib achieved a ≥ 35% reduction from baseline in spleen volume at any time during the study, and 97.1% of pts (132/136) with postbaseline assessments experienced a clinical benefit with some degree of reduction in spleen volume. Spleen reductions of ≥ 35% were sustained with continued ruxolitinib therapy (median duration not yet reached); the probabilities of maintaining the spleen response at wk 48 and 84 are 75% (95% CI, 61%-84%) and 58% (95% CI, 35%-76%), respectively (Figure). Since the last report (median 61.1 wk), an additional 9 and 12 deaths were reported in the ruxolitinib and BAT arms, respectively, resulting in a total of 20 (14%) and 16 (22%) deaths overall. Although there was no inferential statistical testing at this unplanned analysis, pts randomized to ruxolitinib showed longer survival than those randomized to BAT (HR = 0.52; 95% CI, 0.27–1.00). As expected, given the mechanism of action of ruxolitinib as a JAK1 & 2 inhibitor, the most common new or worsened grade 3/4 hematologic abnormalities during randomized treatment were anemia (ruxolitinib, 40.4%; BAT, 23.3%), lymphopenia (22.6%; 31.5%), and thrombocytopenia (9.6%; 9.6%). In the ruxolitinib arm, mean hemoglobin levels decreased over the first 12 wk of treatment and then recovered to levels similar to BAT from wk 24 onward; there was no difference in the mean monthly red blood cell transfusion rate among the ruxolitinib and BAT groups (0.834 vs 0.956 units, respectively). Nonhematologic AEs were primarily grade 1/2. Including the extension phase, there were no new nonhematologic AEs in the ruxolitinib group that were not observed previously (in ≥ 10% of pts), and only 1 pt had a new grade 3/4 AE (epistaxis). Conclusion: In COMFORT-II, ruxolitinib provided rapid and durable reductions in splenomegaly; this analysis demonstrates that these reductions are sustained over 2 years of treatment in the majority of pts. Ruxolitinib-treated pts showed longer survival than those receiving BAT, consistent with the survival advantage observed in previous (Verstovsek et al. NEJM. 2012) and current analyses of COMFORT-I, as well as with the comparison of pts of the phase 1/2 study with matched historical controls (Verstovsek et al. Blood. 2012). Disclosures: Cervantes: Sanofi-Aventis: Advisory Board, Advisory Board Other; Celgene: Advisory Board, Advisory Board Other; Pfizer: Advisory Board, Advisory Board Other; Teva Pharmaceuticals: Advisory Board, Advisory Board Other; Bristol-Myers Squibb: Speakers Bureau; Novartis: AdvisoryBoard Other, Speakers Bureau. Kiladjian:Shire: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding. Niederwieser:Novartis: Speakers Bureau. Sirulnik:Novartis: Employment, Equity Ownership. Stalbovskaya:Novartis: Employment, Equity Ownership. McQuity:Novartis: Employment, Equity Ownership. Hunter:Incyte: Employment. Levy:Incyte: Employment, stock options Other. Passamonti:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Barbui:Novartis: Honoraria. Gisslinger:AOP Orphan Pharma AG: Consultancy, Speakers Bureau; Celgene: Consultancy, Research Funding, Speakers Bureau; Novartis: Consultancy, Research Funding, Speakers Bureau. Vannucchi:Novartis: Membership on an entity's Board of Directors or advisory committees. Knoops:Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees. Harrison:Shire: Honoraria, Research Funding; Sanofi: Honoraria; YM Bioscience: Consultancy, Honoraria; Novartis: Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4009-4009
Author(s):  
Jeff H. Lipton ◽  
Luis Meillon ◽  
Vernon Louw ◽  
Carolina Pavlovsky ◽  
Lee-Yung Shih ◽  
...  

Abstract Background Frontline nilotinib 300 mg twice daily (BID) provides superior efficacy vs imatinib in pts with CML-CP, with good tolerability. Evaluating Nilotinib Efficacy and Safety in Clinical Trials—Extending Molecular Reponses (ENESTxtnd) is evaluating the kinetics of molecular response to frontline nilotinib 300 mg BID in pts with newly diagnosed CML-CP, as assessed in national and local laboratories, and is also the first study to evaluate the safety and efficacy of nilotinib dose optimization (including dose re-escalation in pts who require dose reductions due to adverse events [AEs] and dose increase in pts with less than optimal response). Here, we present results of a preplanned, interim analysis (IA) based on the first 20% of pts who completed 12 mo of treatment or discontinued early. Methods ENESTxtnd (NCT01254188) is an open-label, multicenter, phase 3b clinical trial of nilotinib 300 mg BID in adults with CML-CP newly diagnosed within 6 mo of study entry. The primary endpoint is rate of MMR by 12 mo. Molecular responses were monitored by real-time quantitative polymerase chain reaction (RQ-PCR) at local laboratories at baseline, at 1, 2, and 3 mo, and every 3 mo thereafter. Bone marrow cytogenetic analyses were performed locally at baseline, 6 mo, and end of study. Dose reductions were allowed for grade ≥ 2 nonhematologic AEs and grade 3/4 hematologic AEs. Pts with dose reductions could attempt to re-escalate (successful re-escalation defined as ≥ 4 wk on nilotinib 300 mg BID with no dose adjustments for any AE) and remain on study. Dose increase to nilotinib 400 mg BID was allowed in cases of BCR-ABL > 10% on the International Scale (BCR-ABLIS) at 3 mo or later, no major molecular response (MMR; BCR-ABLIS ≤ 0.1%) at 12 mo, loss of MMR, or treatment failure. Results This IA includes 85 pts treated in 12 countries (Argentina, Australia, Brazil, Canada, Israel, Lebanon, Mexico, Malaysia, Saudi Arabia, Thailand, Taiwan, and South Africa). Median age was 49 y (range, 19-85 y), and 58% of pts were male. Median time since diagnosis was 35 days (range, 2-157 days). Prior to study entry, 64 pts (75%) received hydroxyurea, and 3 pts (4%) received imatinib (all for ≤ 2 wk). At the data cutoff, 68 pts (80%) had treatment ongoing, and the remaining 17 had discontinued due to AEs/laboratory abnormalities (n = 8; nonhematologic AEs [n = 5], biochemical abnormalities [n = 2], and hematologic abnormalities [n = 1]), loss to follow-up (n = 2), administrative problems (n = 2), intolerance to the protocol-proposed dose (n = 2), suboptimal response (n = 1), withdrawal of consent (n = 1), or protocol deviation (n = 1). Median time on treatment was 13.8 mo (range, 1 day-18 mo). Median actual dose intensity of nilotinib was 597 mg/day (range, 165-756 mg/day), and 85% of pts had an actual dose intensity of > 400 mg/day to ≤ 600 mg/day. Of 30 pts with dose reductions due to AEs, 19 (63%) successfully re-escalated to nilotinib 300 mg BID. Nine pts (11%) dose escalated to nilotinib 400 mg BID due to lack of efficacy. The primary endpoint of MMR by 12 mo was achieved by 57 pts (67%; 99.89% CI, 49%-82%). Complete cytogenetic response by 6 mo was achieved by 48 pts (56%). Median BCR-ABLIS decreased over time, with a median value of 0.05% (range, 0.00%-41.36%) at 12 mo (Figure). Most pts (91%) achieved early molecular response (BCR-ABLIS ≤ 10% at 3 mo). Of the 8 pts (9%) with BCR-ABLIS > 10% at 3 mo (4 of whom were then dose escalated), 3 achieved MMR by 12 mo (1 of whom had been dose escalated). By the data cutoff, no pt had progressed to accelerated phase/blast crisis (AP/BC), and there had been no deaths on study. Nilotinib was well tolerated, with a safety profile similar to that seen in other frontline studies. Drug-related nonhematologic AEs (≥ 10% of pts) were rash (31%), constipation (13%), and headache (13%). Newly occurring or worsening grade 3/4 hematologic or biochemical abnormalities (≥ 10% of pts) were neutropenia (17%), thrombocytopenia (17%), increased lipase (13%), and increased bilirubin (12%). Conclusions These results demonstrate that dose-optimized nilotinib affords high rates of molecular response in pts with newly diagnosed CML-CP. Further, they support the feasibility of nilotinib dose re-escalation in pts who require temporary dose reductions due to AEs, with 63% of dose-reduced pts able to successfully re-escalate to nilotinib 300 mg BID and safely continue therapy. Disclosures: Lipton: Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Ariad: Equity Ownership, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau. Meillon:Bayer: Honoraria; Novartis: Honoraria; Bristol Myers Squibb: Honoraria; Pfizer: Honoraria. Louw:Novartis: Congress attendance support Other, Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Congress attendance support, Congress attendance support Other, Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Pfizer: Research Funding. Pavlovsky:Novartis: Research Funding, Speakers Bureau; Bristol Myers Squibb: Speakers Bureau. Jin:Novartis: Employment. Acharya:Novartis Healthcare Pvt. Ltd.: Employment. Woodman:Novartis: Employment, Equity Ownership. Hughes:Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria; CSL: Research Funding. Turkina:Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4240-4240 ◽  
Author(s):  
Jin Lu ◽  
Jae Hoon Lee ◽  
Shang-Yi Huang ◽  
Lugui Qiu ◽  
Je-Jung Lee ◽  
...  

Abstract Background: Given the increasing incidence of multiple myeloma (MM) in Asian countries, effective treatment options for these patient (pt) populations are needed (Kim et al, Am J Hematol, 2014). The pivotal phase 3 FIRST trial investigated continuous treatment with lenalidomide plus low-dose dexamethasone until disease progression (Rd continuous) in pts with newly diagnosed MM (NDMM) who were ineligible for transplant from 18 countries, including China, South Korea, and Taiwan. Treatment with Rd continuous in the FIRST trial improved progression-free survival (PFS; hazard ratio [HR] = 0.72; P < .001) and overall survival (OS; HR = 0.78; P = .02) compared with melphalan-prednisone-thalidomide (MPT; Benboubker et al, N Engl J Med, 2014). This subanalysis of the FIRST trial examined the efficacy and safety of Rd continuous in the Asian population. Methods: Pts with NDMM aged ≥ 65 years or ineligible for transplant were randomized to 3 treatment arms: Rd continuous, Rd for 18 cycles (Rd18; 72 weeks), or MPT for 12 cycles (72 weeks). The primary endpoint was PFS in pts treated with Rd continuous vs MPT (primary comparators). Secondary endpoints included OS, overall response rate (ORR), duration of response (DOR), and safety. Data cutoff was May 24, 2013; response and progression were assessed by an independent response adjudication committee. OS was assessed with extended follow-up at a data cutoff of March 3, 2014. Results: Of the 114 pts enrolled in China, South Korea, and Taiwan, the median age (68 yrs [range, 43-86 yrs]) was similar across the Rd continuous (n = 36), Rd18 (n = 38), and MPT (n = 40) arms but was lower than that of the overall study population (73 yrs [range, 40-92 yrs]). Compared with the overall population, pts in Asia also had a higher rate of International Staging System stage III disease (45% in Asia vs 41% overall), a higher rate of Eastern Cooperative Oncology Group performance status ≥ 2 (28% in Asia vs 22% overall), and double the rate of severe renal insufficiency (creatinine clearance < 30 mL/min; 18% in Asia vs 9% overall), the latter of which was more frequent in the MPT (23%) and Rd18 (24%) arms vs the Rd continuous (8%) arm. There were more male than female pts (58% vs 42%) in the Asian population, with the exception of the MPT arm (50% each). The median treatment duration was 18.4 mos (range, 0.5-35.9 mos) for Rd continuous, 11.0 mos (range, 0.6-19.6 mos) for Rd18, and 11.1 mos (range, 0.3-19.1 mos) for MPT. Treatment with Rd continuous vs MPT resulted in a 39% reduction in the risk of progression or death (hazard ratio [HR] = 0.61; 95% CI, 0.33-1.14; Table). Rates of 2-year PFS were nearly doubled with Rd continuous (48%) vs MPT (25%). Rd continuous also resulted in a 48% reduced risk of death vs MPT (HR = 0.52; 95% CI, 0.24-1.13). Rates of 3-year OS were greater with Rd continuous (70%) vs MPT (56%). Similar improvements were observed for PFS and OS with Rd continuous vs Rd18. ORR was greater in the Rd continuous (78%) arm vs the Rd18 (66%) and MPT (58%) arms. Median DOR was not reached for Rd continuous and was 17.2 and 13.8 mos for Rd18 and MPT, respectively. The most frequent grade 3/4 adverse events with Rd continuous, Rd18, and MPT treatment were neutropenia (25%, 34%, 44%), anemia (19%, 5%, 15%), pneumonia (6%, 24%, 15%), and thrombocytopenia (14%, 5%, 5%). Deep vein thrombosis was reported in only 1 pt on the MPT arm, and pulmonary embolism was reported in 1 pt on each treatment arm. There were no reports of second primary malignancies in the Asian population. Conclusions: Rd continuous treatment was associated with numerically larger PFS and OS benefits and higher response rates compared with MPT in the Asian subgroup of the FIRST trial, although pt numbers were small. Results from the Asian subgroup were consistent with that of the global population, with no unexpected safety signals observed, a low rate of thromboembolic events, and no second primary malignancies as of the data cutoff. These findings support the use of Rd continuous as standard treatment for pts with NDMM who are ineligible for stem cell transplant, including in Asian populations. Disclosures Qiu: Celgene Corporation: Speakers Bureau; Johnson & Johnson: Speakers Bureau; Roche: Speakers Bureau. Yiu:Celgene Corporation: Employment, Equity Ownership. Chen:Celgene Corporation: Employment, Equity Ownership. Ervin Haynes:Celgene Corporation: Employment, Equity Ownership. Hulin:Celgene Corporation: Honoraria; Janssen: Honoraria; Amgen: Honoraria; Bristol Myers Squibb: Honoraria. Facon:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millenium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Pierre Fabre: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document