scholarly journals Further characterization of platelet-type von Willebrand's disease in Japan

Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1254-1262 ◽  
Author(s):  
H Takahashi ◽  
M Handa ◽  
K Watanabe ◽  
Y Ando ◽  
R Nagayama ◽  
...  

Abstract We studied four patients who showed aggregation of platelets in platelet-rich plasma at lower concentrations of ristocetin than those required for normal platelet-rich plasma and who demonstrated an increased capacity of the platelets to bind normal von Willebrand factor. The four patients were from two Japanese families. Platelets from one family aggregated spontaneously in vitro, and platelets from both families aggregated upon the addition of normal plasma and cryoprecipitate, in the absence of ristocetin or other agonists. Analysis of the multimeric composition of von Willebrand factor by sodium dodecyl sulfate-agarose gel electrophoresis revealed a decrease in large multimers or a decrease in both large and intermediate multimers in plasma, but normal multimers in platelets. 1-Deamino-[8-D- arginine]-vasopressin caused by an immediate appearance of larger multimers in plasma, followed by the rapid disappearance of these multimers from circulating plasma. Analysis of platelet membrane glycoproteins from the patients showed that there were two distinct bands in the glycoprotein I region; one migrated in a slower region and the other in a faster region than normal glycoprotein Ib. We suggest that the platelet receptor abnormality in these patients is related to this abnormality of glycoprotein Ib.

Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1254-1262
Author(s):  
H Takahashi ◽  
M Handa ◽  
K Watanabe ◽  
Y Ando ◽  
R Nagayama ◽  
...  

We studied four patients who showed aggregation of platelets in platelet-rich plasma at lower concentrations of ristocetin than those required for normal platelet-rich plasma and who demonstrated an increased capacity of the platelets to bind normal von Willebrand factor. The four patients were from two Japanese families. Platelets from one family aggregated spontaneously in vitro, and platelets from both families aggregated upon the addition of normal plasma and cryoprecipitate, in the absence of ristocetin or other agonists. Analysis of the multimeric composition of von Willebrand factor by sodium dodecyl sulfate-agarose gel electrophoresis revealed a decrease in large multimers or a decrease in both large and intermediate multimers in plasma, but normal multimers in platelets. 1-Deamino-[8-D- arginine]-vasopressin caused by an immediate appearance of larger multimers in plasma, followed by the rapid disappearance of these multimers from circulating plasma. Analysis of platelet membrane glycoproteins from the patients showed that there were two distinct bands in the glycoprotein I region; one migrated in a slower region and the other in a faster region than normal glycoprotein Ib. We suggest that the platelet receptor abnormality in these patients is related to this abnormality of glycoprotein Ib.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 927-937
Author(s):  
FM LaDuca ◽  
RE Bettigole ◽  
WR Bell ◽  
EB Robson

The contribution of von Willebrand factor (vWF)-platelet binding to platelet-collagen interaction was examined in vitro. The binding of vWF to platelets was mediated and regulated by ristocetin. Subthreshold concentrations of ristocetin (less than or equal to 1 mg/mL), insufficient to cause ristocetin-induced platelet aggregation (RIPA), were added to platelet-rich plasma (PRP) prior to the addition of collagen. The collagen-induced platelet aggregation (CIPA) was modified by ristocetin and the degree of alteration was dependent on the ristocetin concentration. Response as a function of ristocetin concentration was designated the Collagen-Platelet Aggregation Response (CoI-PAR). In normal PRP the CoI-PAR was a progressive inhibition followed by decreasing inhibition and then an enhanced response. The enhanced response occurred over a narrow range of ristocetin concentrations (0.8 to 1.0 mg/mL). In the absence of vWF (severe von Willebrand's disease, Type I, vWF less than 1%) the CoI-PAR was a progressive, eventually complete inhibition with no enhanced response (with ristocetin concentrations up to 3.0 mg/mL). With addition of vWF to this PRP an enhanced response was observed at a ristocetin concentration inversely proportional to the vWF level. PRP from a patient with severe Hemophilia A showed a response within the normal range. Subthreshold ristocetin did not cause plasma protein precipitation or platelet release of 3H-serotonin, nor induce micro platelet aggregate formation. Digestion of platelet membrane glycoproteins (GP(s] with chymotrypsin demonstrated that upon removal of GPI, RIPA was absent, CIPA retained and the CoI-PAR was progressive inhibition, with no enhancement. With removal of GPs I, II, and III, RIPA, CIPA, and the CoI-PAR were absent. A dose-response 125I-vWF- platelet binding occurred with increasing ristocetin concentrations which was unchanged by the addition of collagen. These results demonstrated that ristocetin-platelet association inhibited CIPA, and vWF-platelet binding enhanced platelet-collagen adhesion and platelet aggregation. The in vitro-enhanced CIPA represents a vWF-dependent aggregation of sufficient magnitude to overcome the inhibitory effect of ristocetin. These studies demonstrate an influential interaction of ristocetin, vWF, and collagen with the platelet membrane and imply an important hemostatic contribution of vWF-platelet binding in platelet- collagen interaction.


Blood ◽  
1993 ◽  
Vol 81 (9) ◽  
pp. 2321-2328 ◽  
Author(s):  
M Peng ◽  
W Lu ◽  
L Beviglia ◽  
S Niewiarowski ◽  
EP Kirby

Abstract Echicetin, a new protein isolated from Echis carinatus venom by reverse phase and ion exchange chromatography specifically inhibited agglutination of fixed platelets induced by several platelet glycoprotein Ib (GPIb) agonists, such as bovine von Willebrand factor (vWF), alboaggregins, and human vWF in the presence of botrocetin. Unlike alboaggregins, echicetin bound to GPIb but did not induce agglutination of washed or fixed platelets. In contrast to disintegrins, it did not block adenosine 5'-diphosphate (ADP)-induced platelet aggregation in the presence of fibrinogen. The apparent molecular weight of echicetin measured on sodium dodecyl sulfate (SDS) gel electrophoresis was 26 Kd under nonreducing conditions. On reduction, echicetin showed 16 and 14-Kd subunits suggesting that the molecule is a dimer. Reduced echicetin retained its binding activity and its inhibitory effect on the agglutination of fixed platelets induced by bovine vWF. 125I-echicetin bound to fixed platelets with high affinity (kd = 30 +/- 1.8 nmol/L) at 45,000 +/- 2,400 binding sites per platelet. The binding was selectively inhibited by a monoclonal antibody to the 45-Kd N-terminal domain of platelet GPIb, but not by monoclonal antibodies to other regions on GPIb. Binding of 125I-bovine vWF to fixed platelets was strongly inhibited by echicetin. In contrast, bovine vWF showed a much weaker inhibitory activity on binding of 125I-echicetin to platelets. The half life of echicetin in blood was approximately 170 minutes with no detectable degradation. Echicetin significantly prolonged the bleeding time of mice, suggesting that it may inhibit vWF binding to GPIb in vivo as well as in vitro.


Blood ◽  
1993 ◽  
Vol 81 (9) ◽  
pp. 2321-2328 ◽  
Author(s):  
M Peng ◽  
W Lu ◽  
L Beviglia ◽  
S Niewiarowski ◽  
EP Kirby

Echicetin, a new protein isolated from Echis carinatus venom by reverse phase and ion exchange chromatography specifically inhibited agglutination of fixed platelets induced by several platelet glycoprotein Ib (GPIb) agonists, such as bovine von Willebrand factor (vWF), alboaggregins, and human vWF in the presence of botrocetin. Unlike alboaggregins, echicetin bound to GPIb but did not induce agglutination of washed or fixed platelets. In contrast to disintegrins, it did not block adenosine 5'-diphosphate (ADP)-induced platelet aggregation in the presence of fibrinogen. The apparent molecular weight of echicetin measured on sodium dodecyl sulfate (SDS) gel electrophoresis was 26 Kd under nonreducing conditions. On reduction, echicetin showed 16 and 14-Kd subunits suggesting that the molecule is a dimer. Reduced echicetin retained its binding activity and its inhibitory effect on the agglutination of fixed platelets induced by bovine vWF. 125I-echicetin bound to fixed platelets with high affinity (kd = 30 +/- 1.8 nmol/L) at 45,000 +/- 2,400 binding sites per platelet. The binding was selectively inhibited by a monoclonal antibody to the 45-Kd N-terminal domain of platelet GPIb, but not by monoclonal antibodies to other regions on GPIb. Binding of 125I-bovine vWF to fixed platelets was strongly inhibited by echicetin. In contrast, bovine vWF showed a much weaker inhibitory activity on binding of 125I-echicetin to platelets. The half life of echicetin in blood was approximately 170 minutes with no detectable degradation. Echicetin significantly prolonged the bleeding time of mice, suggesting that it may inhibit vWF binding to GPIb in vivo as well as in vitro.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 927-937 ◽  
Author(s):  
FM LaDuca ◽  
RE Bettigole ◽  
WR Bell ◽  
EB Robson

Abstract The contribution of von Willebrand factor (vWF)-platelet binding to platelet-collagen interaction was examined in vitro. The binding of vWF to platelets was mediated and regulated by ristocetin. Subthreshold concentrations of ristocetin (less than or equal to 1 mg/mL), insufficient to cause ristocetin-induced platelet aggregation (RIPA), were added to platelet-rich plasma (PRP) prior to the addition of collagen. The collagen-induced platelet aggregation (CIPA) was modified by ristocetin and the degree of alteration was dependent on the ristocetin concentration. Response as a function of ristocetin concentration was designated the Collagen-Platelet Aggregation Response (CoI-PAR). In normal PRP the CoI-PAR was a progressive inhibition followed by decreasing inhibition and then an enhanced response. The enhanced response occurred over a narrow range of ristocetin concentrations (0.8 to 1.0 mg/mL). In the absence of vWF (severe von Willebrand's disease, Type I, vWF less than 1%) the CoI-PAR was a progressive, eventually complete inhibition with no enhanced response (with ristocetin concentrations up to 3.0 mg/mL). With addition of vWF to this PRP an enhanced response was observed at a ristocetin concentration inversely proportional to the vWF level. PRP from a patient with severe Hemophilia A showed a response within the normal range. Subthreshold ristocetin did not cause plasma protein precipitation or platelet release of 3H-serotonin, nor induce micro platelet aggregate formation. Digestion of platelet membrane glycoproteins (GP(s] with chymotrypsin demonstrated that upon removal of GPI, RIPA was absent, CIPA retained and the CoI-PAR was progressive inhibition, with no enhancement. With removal of GPs I, II, and III, RIPA, CIPA, and the CoI-PAR were absent. A dose-response 125I-vWF- platelet binding occurred with increasing ristocetin concentrations which was unchanged by the addition of collagen. These results demonstrated that ristocetin-platelet association inhibited CIPA, and vWF-platelet binding enhanced platelet-collagen adhesion and platelet aggregation. The in vitro-enhanced CIPA represents a vWF-dependent aggregation of sufficient magnitude to overcome the inhibitory effect of ristocetin. These studies demonstrate an influential interaction of ristocetin, vWF, and collagen with the platelet membrane and imply an important hemostatic contribution of vWF-platelet binding in platelet- collagen interaction.


Blood ◽  
1982 ◽  
Vol 59 (3) ◽  
pp. 542-548 ◽  
Author(s):  
HR Gralnick ◽  
MC Cregger ◽  
SB Williams

Abstract The factor VIII/von Willebrand factor (f.VIII/vWf) protein was purified from the plasma of a patient with von Willebrand's disease (vWd). The patient had all of the classic laboratory findings of vWd except for the ristocetin-induced platelet aggregation of his own platelet-rich plasma. The disease has been documented in three generations. Comparison of the purified normal and vWd f.VIIi/vWf protein revealed several abnormalities, including decreased concentration of f.VIII/vWf antigen; decreased specific vWf activity; absence of the larger molecular forms of the f.VIII/vWf protein; carbohydrate deficiencies affecting the sialic acid, penultimate galactose and N- acetylglucosamine moieties; and decreased binding of the f.VIII/vWf protein to its platelet receptor. These studies indicate the multiplicity of biochemical and functional abnormalities associated with the f.VIII/vWf protein in vWd. f.VIII/vWf protein to normal f.VIII/vWf protein that had been treated with 2-mercaptoethanol (2-ME) to reduce the multimer size and then treated with specific exoglycosidases to remove the sialic acid and penultimate galactose residues revealed similar biologic properties.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 947-952 ◽  
Author(s):  
AB Federici ◽  
C De Romeuf ◽  
PG De Groot ◽  
B Samor ◽  
R Lombardi ◽  
...  

Abstract In this cooperative study, we explored the role of the carbohydrate moiety (CHO) of von Willebrand factor (vWF) in supporting platelet adhesion. Because of previous discrepant results, all purification steps and CHO modifications by various enzymes were critically evaluated. Under our conditions, CHO-modified vWF preparations contained less than 5% of the initial sialic acid ([Neu]-ase-vWF) and less than 45% ([Neu-Gal]-ase-vWF) or 21% ([Neu-Gal-eF]-ase-vWF) of the D-galactose. These preparations usually showed increased electrophoretic mobility but no significant loss of high-mol-wt multimers when proteolysis had been prevented. Some degree of proteolysis was noted in some carbohydrate-modified vWFs, but the degree of degradation observed did not correlate with the removal of D- galactose. Platelet adhesion to various matrices increased after removal of the terminal sialic acid ([Neu]-ase-vWF) and approximately 45% of the D-galactose ([Neu-Gal]-ase-vWF), but returned to normal values when greater than 70% of the total carbohydrate had been removed by endoglycosidase F [Neu-Gal-ef]-ase-vWF). These changes in reactivity were also reflected in the spontaneous aggregation in normal platelet- rich plasma (PRP) after CHO removal.


Blood ◽  
1987 ◽  
Vol 70 (6) ◽  
pp. 1804-1809 ◽  
Author(s):  
JL Miller ◽  
ZM Ruggeri ◽  
VA Lyle

Abstract The present studies demonstrate that platelets from patients with platelet-type von Willebrand disease show specific and saturable binding of asialo von Willebrand factor (AS-vWF) under conditions where such binding is not observed with normal platelets. Although specific binding of 125I-AS-vWF to formalin-fixed normal platelets could not be demonstrated, specific binding to fixed patient platelets was seen with an apparent Kd of 1.3 micrograms/mL and specific maximally bound ligand of 0.40 micrograms/10(8) platelets. Preincubation of patient platelets with the antiglycoprotein Ib (anti-GPIb) monoclonal antibody AS-2 reduced total binding close to the level of computer-estimated nonspecific binding. In contrast, binding was not reduced by preincubation with anti-GPIIb/IIIa monoclonal antibody or with 5 mmol/L EDTA. Under stirring conditions, the binding of AS-vWF to fixed patient platelets was accompanied by a strong agglutination response. AS-vWF- induced agglutination was similarly observed in patient but not normal platelet-rich plasma (PRP) in the presence of 5 mmol/L EDTA. In the absence of EDTA, AS-vWF produced a full aggregation response in patient PRP at concentrations as low as 0.1 microgram/mL in contrast to the 2 to 20 micrograms/mL required by normal PRP. Both thromboxane B2 formation and adenosine triphosphate secretion showed an AS-vWF concentration dependence paralleling the aggregation responses. These studies show that a major difference in the platelets from patients with platelet-type von Willebrand disease is the presence of an exposed, high-affinity binding site associated with GPIb that recognizes AS-vWF.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2074-2074
Author(s):  
Nicholas A Arce ◽  
Ally J Su ◽  
Renhao Li

Abstract Introduction: Von Willebrand factor (VWF) is a multimeric plasma glycoprotein responsible for platelet arrest during injury, especially at high shear. After immobilization to the vessel wall, a VWF multimer is unfurled and elongated. This leads to exposure of the A1 domain therein that in turn binds to platelet receptor GPIbα and starts the aggregation process. Recently, it was suggested that VWF activation involves force-dependent disruption of the autoinhibitory module (AIM) that flanks the A1 domain on both sides. In this scenario, the AIM could be targeted for both VWF inhibition (Caplacizumab) and activation (ristocetin), although the exact mechanism and binding site of ristocetin still remains murky. If the quasi-stable structure of the AIM is important to VWF autoinhibition, specific disruption of its confirmation may be able to activate VWF. To this end, we sought to identify AIM-targeting activators using yeast surface display of a llama nanobody library. Methods: One adult Lama glama was immunized with recombinant human VWF AIM-A1 protein produced from transfected Expi293F cells. VHH specific genes were amplified from cDNAs prepared from PBMCs of the animal and electroporated into EBY100 cells. The resulting yeast display library was screened for AIM-specific binders via selection against binding to recombinant A1 protein without an intact AIM, and then for binding to the complex of AIM-A1 with GPIbα. Positive hits were produced as His-tagged monomeric nanobodies in E. coli and purified with nickel-affinity and gel filtration chromatography. The affinity of nanobodies to AIM-A1 was determined using bio-layer interferometry. Platelet-rich plasma from healthy donors was used to assess the effect of nanobodies on platelet aggregation in a light transmission aggregometer with comparison to that of ristocetin. Results: An AIM-A1-specific nanobody yeast display library was established. Several rounds of flow cytometry-based cell sorting of yeast cells with aforementioned binding properties produced AIM-binding nanobodies. Nanobodies encoded in three single clones have been expressed from E. coli and they exhibited differential binding affinities towards AIM-A1. Clone 6C4 showed the lowest affinity (K D 120 ± 3 nM), 6D12 showed intermediate affinity (K D 31 ± 0.8 nM), and 6C11 showed the highest affinity (K D 13.5 ± 0.2 nM) as shown in Figure 1. These nanobodies showed no detectable affinity towards recombinant A1-CAIM protein (residues 1268-1493), indicating that their epitopes are located in the N-terminal portion of the AIM (residues 1238-1267). When added to human platelet-rich plasma, each nanobody dose-dependently activated platelets and rapidly induced full platelet aggregation at concentrations exceeding the affinity of the nanobody for VWF (Figure 2). The aggregation could be inhibited by the addition of antibodies that block the interaction between VWF and GPIbα. Plots of extents of aggregation as a function of nanobody concentration produced EC 50 values of ~100 nM for 6C11 and 6D12. Conclusion: By isolating nanobodies that can bind specifically to the AIM and activate plasma VWF, we add supporting evidence that the AIM protects the A1 domain from binding to platelets. Interestingly, these nanobodies bind to the NAIM, on the opposite side of the module compared to ristocetin, the only known AIM-activating agent until now. With higher VWF-binding affinities than ristocetin and a robust profile as stable monomers, these nanobodies may prove useful in VWF-related research and diagnostics. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 149-156 ◽  
Author(s):  
HJ Weiss ◽  
II Sussman

We report three members of a family who had reduced levels of plasma von Willebrand factor (vWF) and increased ristocetin-induced platelet aggregation (RIPA) (aggregation of platelet-rich plasma with ristocetin at a concentration of 0.45 mg/mL), as previously reported in type IIB and pseudo-von Willebrand's disease (vWD). However, in contrast to the latter two disorders in which the larger vWF multimers are absent in plasma, the entire range of vWF multimers was observed in the patients' plasma after sodium dodecyl sulfate-agarose gel electrophoresis, and all vWF multimers (including the largest) were present in the same proportion as in normal plasma and type I vWD. Thus, despite increased RIPA, the levels and multimeric pattern of vWF in this family's plasma were indistinguishable from those in type I vWD in which RIPA is usually decreased. Addition of ristocetin to the patients' platelet- rich plasma resulted in the removal of vWF (and, more selectively, of the large multimers) at lower concentrations of ristocetin than normal, as in type IIB and pseudo-vWD. The defect in the patients was localized to their vWF, which had an enhanced capacity for aggregating washed normal platelets in the presence of low concentrations of ristocetin and for aggregating pseudo-vWD platelets (in the absence of ristocetin). Both glycoproteins (GP) Ib and IIb-IIIa were involved in the enhanced aggregation response. RIPA (at low ristocetin concentrations) in the patients' platelet-rich plasma was abolished by a monoclonal antibody (AP1) to GPIb and was markedly reduced by monoclonal antibodies (10E5 and LJP9) that block adenosine diphosphate and thrombin-induced binding of vWF and fibrinogen to GPIIb-IIIa but was unaffected by an antibody (LJP5) that only blocks vWF binding. Partial inhibition of the initial aggregation slope (and complete inhibition of second phase aggregation) was achieved with creatine phosphate/creatine phosphokinase. EDTA blocked second-phase aggregation but was without effect on the initial slope. The findings in this family combine some features of both type I vWD (normal pattern of vWF multimers in plasma) and type IIB vWD (increased RIPA) and further demonstrate the increasing complexity of the structure-function relationships in vWD.


Sign in / Sign up

Export Citation Format

Share Document