scholarly journals Detection of Philadelphia chromosome-positive acute lymphoblastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation

Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1366-1370 ◽  
Author(s):  
K Miyamura ◽  
M Tanimoto ◽  
Y Morishima ◽  
K Horibe ◽  
K Yamamoto ◽  
...  

Abstract Minimal residual disease (MRD) in patients with Philadelphia chromosome- positive acute lymphoblastic leukemia (Ph1 ALL) who received allogeneic (n = 9) or autologous (n = 6) bone marrow transplantation (BMT) was evaluated by the polymerase chain reaction (PCR) for the bcr-abl transcript. Twelve patients received BMT at the time of hematologic and cytogenetic remission. However, MRD was detected in 8 of 10 patients evaluated. Seven patients, including three who had MRD before BMT, continue to have a disease-free survival 5 to 64 months after BMT. Twenty-one specimens obtained from these patients at various times after BMT did not show MRD. In three patients, MRD detected just before BMT seems to be eradicated by BMT protocol. The other eight patients developed cytogenetic or hematologic relapses 2 to 8 months after BMT. Seven of 14 samples from these patients demonstrated MRD, which preceded clinical relapse by 3 to 9 weeks. Thus, this technique for the detection of MRD appears to be useful for the more precise assessment of various antileukemia therapies and for early detection of leukemia recurrence.

Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1366-1370 ◽  
Author(s):  
K Miyamura ◽  
M Tanimoto ◽  
Y Morishima ◽  
K Horibe ◽  
K Yamamoto ◽  
...  

Minimal residual disease (MRD) in patients with Philadelphia chromosome- positive acute lymphoblastic leukemia (Ph1 ALL) who received allogeneic (n = 9) or autologous (n = 6) bone marrow transplantation (BMT) was evaluated by the polymerase chain reaction (PCR) for the bcr-abl transcript. Twelve patients received BMT at the time of hematologic and cytogenetic remission. However, MRD was detected in 8 of 10 patients evaluated. Seven patients, including three who had MRD before BMT, continue to have a disease-free survival 5 to 64 months after BMT. Twenty-one specimens obtained from these patients at various times after BMT did not show MRD. In three patients, MRD detected just before BMT seems to be eradicated by BMT protocol. The other eight patients developed cytogenetic or hematologic relapses 2 to 8 months after BMT. Seven of 14 samples from these patients demonstrated MRD, which preceded clinical relapse by 3 to 9 weeks. Thus, this technique for the detection of MRD appears to be useful for the more precise assessment of various antileukemia therapies and for early detection of leukemia recurrence.


2001 ◽  
Vol 119 (5) ◽  
pp. 175-180 ◽  
Author(s):  
Carlos Alberto Scrideli ◽  
Ricardo Defavery ◽  
José Eduardo Bernardes ◽  
Luíz Gonzaga Tone

CONTEXT: The CDR-3 region of heavy-chain immunoglobulin has been used as a clonal marker in the study of minimal residual disease in children with acute lymphoblastic leukemia. Southern blot and polymerase chain reaction studies have demonstrated the occurrence of bi/oligoclonality in a variable number of cases of B-lineage acute lymphoblastic leukemia, a fact that may strongly interfere with the detection of minimal residual disease. Oligoclonality has also been associated with a poorer prognosis and a higher chance of relapse. OBJECTIVES: To correlate bi/oligoclonality, detected by polymerase chain reaction in Brazilian children with B-lineage acute lymphoblastic leukemia with a chance of relapse, with immunophenotype, risk group, and disease-free survival. DESIGN: Prospective study of patients’ outcome. SETTING: Pediatric Oncology Unit of the University Hospital, Faculty of Medicine of Ribeirão Preto, University of São Paulo. PARTICIPANTS: 47 children with acute lymphoblastic leukemia DIAGNOSTIC TEST: Polymerase chain reaction using consensus primers for the CDR-3 region of heavy chain immunoglobulin (FR3A, LJH and VLJH) for the detection of clonality. RESULTS: Bi/oligoclonality was detected in 15 patients (31.9%). There was no significant difference between the groups with monoclonality and biclonality in terms of the occurrence of a relapse (28.1% versus 26.1%), presence of CALLA+ (81.2% versus 80%) or risk group (62.5% versus 60%). Disease-free survival was similar in both groups, with no significant difference (p: 0.7695). CONCLUSIONS: We conclude that bi/oligoclonality was not associated with the factors investigated in the present study and that its detection in 31.9% of the patients may be important for the study and monitoring of minimal residual disease.


Hematology ◽  
2014 ◽  
Vol 2014 (1) ◽  
pp. 244-249 ◽  
Author(s):  
Martin Schrappe

Abstract The detection of minimal residual disease (MRD) has become part of the state-of-the-art diagnostics to guide treatment both in pediatric and adult acute lymphoblastic leukemia (ALL). This applies to the treatment of de novo and recurrent ALL. In high-risk ALL, MRD detection is considered an important tool to adjust therapy before and after hematopoietic stem cell transplantation. Precise quantification and quality control is instrumental to avoid false treatment assignment. A new methodological approach to analyzing MRD has become available and is based on next-generation sequencing. In principle, this technique will be able to detect a large number of leukemic subclones at a much higher speed than before. Carefully designed prospective studies need to demonstrate concordance or even superiority compared with those techniques in use right now: detection of aberrant expression of leukemia-specific antigens by flow cytometry of blood or bone marrow, or detection of specific rearrangements of the T-cell receptor or immunoglobulin genes by real-time quantitative polymerase chain reaction using DNA of leukemic cells. In some cases with known fusion genes, such as BCR/ABL, reverse transcriptase-polymerase chain reaction has been used as additional method to identify leukemic cells by analyzing RNA in patient samples. MRD detection may be used to modulate treatment intensity once it has been demonstrated at well-defined informative checkpoints that certain levels of MRD can reliably predict the risk of relapse. In addition, MRD is used as end point to determine the activity of a given agent or treatment protocol. If activity translates into antileukemic efficacy, MRD may be considered a surrogate clinical end point.


2014 ◽  
Vol 32 (31) ◽  
pp. 3553-3558 ◽  
Author(s):  
Maddalena Paganin ◽  
Giulia Fabbri ◽  
Valentino Conter ◽  
Elena Barisone ◽  
Katia Polato ◽  
...  

Purpose Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. Monitoring minimal residual disease (MRD) by using real-time quantitative polymerase chain reaction (RQ-PCR) provides information for patient stratification and individual risk-directed treatment. Cooperative studies have documented that measurement of blast clearance from the bone marrow during and after induction therapy identifies patient populations with different risk of relapse. We explored the possible contribution of measurements of MRD during the course of treatment. Patients and Methods We used RQ-PCR to detect MRD in 110 unselected patients treated in Italy in the International Collaborative Treatment Protocol for Children and Adolescents With Acute Lymphoblastic Leukemia (AIEOP-BFM ALL 2000). The trial took place in AIEOP centers during postinduction chemotherapy. Results were categorized as negative, low positive (below the quantitative range [< 5 × 10−4]), or high positive (≥ 5 × 10−4). Patients with at least one low-positive or high-positive result were assigned to the corresponding subgroup. Results Patients who tested high positive, low positive, or negative had significantly different cumulative incidences of leukemia relapse: 83.3%, 34.8%, and 8.6%, respectively (P < .001). Two thirds of positive cases were identified within 4 months after induction-consolidation therapy, suggesting that this time frame may be most suitable for cost-effective MRD monitoring, particularly in patients who did not clear their disease at the end of consolidation. Conclusion These findings provide further insights into the dynamic of MRD and the ongoing effort to define molecular relapse in childhood ALL.


2015 ◽  
Vol 37 (6) ◽  
pp. 373-380 ◽  
Author(s):  
Francisco Danilo Ferreira Paula ◽  
Silvana Maria Elói-Santos ◽  
Sandra Guerra Xavier ◽  
Mônica Aparecida Ganazza ◽  
Patricia Yoshioka Jotta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document