scholarly journals Synergistic growth inhibitory and differentiating effects of trimidox and tiazofurin in human promyelocytic leukemia HL-60 cells

Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4316-4321 ◽  
Author(s):  
T Szekeres ◽  
M Fritzer ◽  
H Strobl ◽  
K Gharehbaghi ◽  
G Findenig ◽  
...  

Increased ribonucleotide reductase (RR) activity has been linked with malignant transformation and tumor cell growth. Therefore, this enzyme is considered to be an excellent target for cancer chemotherapy. We have examined the effects of a newly patented RR inhibitor, trimidox (3,4,5-trihydroxybenzohydroxamidoxime). Trimidox inhibited the growth of human promyelocytic leukemia HL-60 cells with an IC50 of 35 mumol/L. Incubation of HL-60 cells with 50 mumol/L trimidox for 24 hours decreased deoxyguanosine triphosphate (dGTP) and deoxycytidine triphosphate (dCTP) pools to 24% and 39% of control values, respectively. Incubation of HL-60 cells with 20 to 80 mumol/L trimidox even up to a period of 4 days did not alter the distribution of cells in different phases of cell cycle. Sequential incubation of HL-60 cells with trimidox (25 mumol/L) for 24 hours and then with 10 mumol/L tiazofurin (an inhibitor of inosine monophosphate dehydrogenase) for 4 days produced synergistic growth inhibitory activity, and the cell number decreased to 16% of untreated controls. When differentiation- linked cell surface marker expressions were determined in cells treated with trimidox and tiazofurin, a significantly increased fluorescence intensity was observed for the CD 11b (2.9-fold). CD 33 (1.9-fold), and HLA-D cell surface antigens. Expression of the transferrin receptor (CD71) increased 7.3-fold in cells treated with both agents, compared with untreated controls. Our results suggest that trimidox in combination with tiazofurin might be useful in the treatment of leukemia.

1977 ◽  
Vol 146 (2) ◽  
pp. 520-534 ◽  
Author(s):  
E V Genovesi ◽  
P A Marx ◽  
E F Wheelock

Friend leukemia virus (FLV) erythroleukemic cells cultured in medium containing FLV-immune serum from dormant FLV-infected mice undergo modulation of FLV cell surface antigens. Modulation was determined by an increased resistance to FLV antibody-mediated complement-dependent lysis and was associated temporally with the capping of FLV-immune complexes at the cell surface. Modulated cells regained their susceptibility to FLV antibody-mediated complement-dependent lysis when transferred to medium containing normal mouse serum. After 48 h of culture in FLV-immune serum, 26% of the FLV erythroleukemic cells were devoid of FLV cell surface antigens as demonstrated by immunofluoresence. Antigenic modulation occurred to a greater extent in cells maintained in logarithmic growth than in cells in GO or resting phase. FLV-antigenic modulation is discussed as a possible mechanism by which antibody induces and maintains FLV-transformed cells in a dormant state.


1979 ◽  
Vol 83 (3) ◽  
pp. 562-575 ◽  
Author(s):  
P A Steck ◽  
P G Voss ◽  
J L Wang

Treatment of sparse, proliferating cultures of 3T3 cells (target cells) with medium conditioned by exposure to density-inhibited 3T3 cultures resulted in an inhibition of growth and division in the target cells when compared to similar treatment with unconditioned medium (UCM). This differential effect of conditioned medium (CM) and UCM on target cells was demonstrated using three assay systems: (a) assessment of total cell number; (b) measurement of [3H]thymidine incorporated into acid-precipitable DNA; and (c) determination of the percentage of radioactively labeled nuclei in individual cells after incorporation of [3H]thymidine. The difference in the total incorporation of [3H]thymidine in CM-treated and UCM-treated cells was reflected by a difference in the percent of labeled cells. There was no differences in the average number of grains per labeled cell in the two cultures. Moreover, the inhibitory effect of the CM on target cell proliferation was reversible. Finally, this growth inhibitory activity can be collected in serum-free medium, precipitated by ammonium sulfate, and fractionated by gel filtration. In these purification procedures, the inhibitory activity was consistently found to be associated with the protein-containing fractions of the CM. No activity was found upon similar treatment with UCM. These results suggest that a system has been developed for the purification and molecular analysis of growth inhibitory factors that may mediate growth control in culture fibroblasts.


Author(s):  
K. Chien ◽  
I.P. Shintaku ◽  
A.F. Sassoon ◽  
R.L. Van de Velde ◽  
R. Heusser

Identification of cellular phenotype by cell surface antigens in conjunction with ultrastructural analysis of cellular morphology can be a useful tool in the study of biologic processes as well as in diagnostic histopathology. In this abstract, we describe a simple pre-embedding, protein A-gold staining method which is designed for cell suspensions combining the handling convenience of slide-mounted cell monolayers and the ability to evaluate specimen staining specificity prior to EM embedding.


Author(s):  
Etienne de Harven ◽  
Davide Soligo ◽  
Roy McGroarty ◽  
Hilary Christensen ◽  
Richard Leung ◽  
...  

Taking advantage of the high elemental contrast of particles of colloidal gold observed in the backscattered electron imaging(BEI) mode of the SEM (1,2), the human T lymphocyte was chosen as a model system to study the potential value of immunogold labeling for the quantification of cell surface expressed molecules. The CD3 antigen which is expressed on all human T lymphocytes and is readily identified by the LEU-4 murine monoclonal antibody (Becton Dickinson, Mountain View, CA) followed by a gold conjugated goat anti-mouse Ig polyclonal antibody was chosen as a model target antigen. When quantified by non-EM methods, using radio-iodinated probes or FACS analysis, approximately 30,000 to 50,000 copies of this antigen per cell are enumerated.The following observations were made while attempting to quantify the same molecule by SEM after specific immunogold labeling:Imaging in the SE vs BE mode: The numbers of gold markers counted in the secondary electron (SE) imaging mode are considerably lower than those counted on the same cells in the backscattered electron (BE) imaging mode.


2021 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
David Méndez-Luna ◽  
Loreley Araceli Morelos-Garnica ◽  
Juan Benjamín García-Vázquez ◽  
Martiniano Bello ◽  
Itzia Irene Padilla-Martínez ◽  
...  

The implementation of chemo- and bioinformatics tools is a crucial step in the design of structure-based drugs, enabling the identification of more specific and effective molecules against cancer without side effects. In this study, three new compounds were designed and synthesized with suitable absorption, distribution, metabolism, excretion and toxicity (ADME-tox) properties and high affinity for the G protein-coupled estrogen receptor (GPER) binding site by in silico methods, which correlated with the growth inhibitory activity tested in a cluster of cancer cell lines. Docking and molecular dynamics (MD) simulations accompanied by a molecular mechanics/generalized Born surface area (MMGBSA) approach yielded the binding modes and energetic features of the proposed compounds on GPER. These in silico studies showed that the compounds reached the GPER binding site, establishing interactions with a phenylalanine cluster (F206, F208 and F278) required for GPER molecular recognition of its agonist and antagonist ligands. Finally, a 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay showed growth inhibitory activity of compounds 4, 5 and 7 in three different cancer cell lines—MIA Paca-2, RCC4-VA and Hep G2—at micromolar concentrations. These new molecules with specific chemical modifications of the GPER pharmacophore open up the possibility of generating new compounds capable of reaching the GPER binding site with potential growth inhibitory activities against nonconventional GPER cell models.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1380
Author(s):  
Xiutao Wu ◽  
Lijie Gong ◽  
Chen Chen ◽  
Ye Tao ◽  
Wuxi Zhou ◽  
...  

Harringtonolide (HO), a natural product isolated from Cephalotaxus harringtonia, exhibits potent antiproliferative activity. However, little information has been reported on the systematic structure−activity relationship (SAR) of HO derivatives. Modifications on tropone, lactone, and allyl positions of HO (1) were carried out to provide 17 derivatives (2–13, 11a–11f). The in vitro antiproliferative activity against four cancer cell lines (HCT-116, A375, A549, and Huh-7) and one normal cell line (L-02) was tested. Amongst these novel derivatives, compound 6 exhibited comparable cell growth inhibitory activity to HO and displayed better selectivity index (SI = 56.5) between Huh-7 and L-02 cells. The SAR results revealed that the tropone and lactone moieties are essential for the cytotoxic activities, which provided useful suggestions for further structural optimization of HO.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1637
Author(s):  
Solida Long ◽  
Joana B. Loureiro ◽  
Carla Carvalho ◽  
Luís Gales ◽  
Lucília Saraiva ◽  
...  

The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1–3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1–3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy.


1993 ◽  
Vol 16 (10) ◽  
pp. 1054-1056
Author(s):  
Dai SASAKI ◽  
Satoshi KOSUNAGO ◽  
Takeshi MIKAMI ◽  
Tatsuji MATSUMOTO ◽  
Masuko SUZUKI

2021 ◽  
pp. 096032712110214
Author(s):  
JY Lee ◽  
HM Lim ◽  
CM Lee ◽  
S-H Park ◽  
MJ Nam

Indole-3-carbinol (I3C) is a phytochemical that exhibits growth-inhibitory activity against various cancer cells. However, there are limited studies on the effects of I3C on colon cancer cells. In this study, the growth-inhibitory activity of I3C against the human colorectal carcinoma cell line (LoVo) was examined. The results of the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide, colony formation, and cell counting assays revealed that I3C suppressed the proliferation of LoVo cells. Microscopy and wound-healing analyses revealed that I3C affected the morphology and inhibited the migration of LoVo cells, respectively. I3C induced apoptosis and DNA fragmentation as evidenced by the results of fluorescein isothiocyanate-conjugated annexin V staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay, respectively. Additionally, I3C arrested the cell cycle at the G0/G1 phase and enhanced the reactive oxygen species levels. Western blotting analysis revealed that treatment with I3C resulted in the activation of apoptotic proteins, such as poly(ADP-ribose) polymerase, caspase-3, caspase-7, caspase-9, Bax, Bim, and p53 in LoVo cells. These results indicate that I3C induces apoptosis in LoVo cells by upregulating p53, leading to the activation of Bax and caspases. Taken together, I3C exerts cytotoxic effects on LoVo cells by activating apoptosis.


Sign in / Sign up

Export Citation Format

Share Document