scholarly journals Methionine supplementation for multi-organ dysfunction in MetRS-related pulmonary alveolar proteinosis

2021 ◽  
pp. 2101554
Author(s):  
Alice Hadchouel ◽  
David Drummond ◽  
Clément Pontoizeau ◽  
Laura Aoust ◽  
Maria-Margarita Hurtado Nedelec ◽  
...  

IntroductionPulmonary alveolar proteinosis related to mutations in the methionine tRNA synthetase (MARS1) gene is a severe, early-onset disease that results in death before the age of 2 years in one-third of patients. It is associated with a liver disease, growth failure and systemic inflammation. As methionine supplementation in yeast models restored normal enzymatic activity of the synthetase, we studied the tolerance, safety and efficacy of daily oral methionine supplementation in patients with severe and early disease.MethodsFour patients received methionine supplementation and were followed for respiratory, hepatic, growth, and inflammation-related outcomes. Their course was compared to those of historical controls. Reactive oxygen species (ROS) production by patient monocytes before and after methionine supplementation was also studied.ResultsMethionine supplementation was associated with respiratory improvement, clearance of the extracellular lipoproteinaceous material, and discontinuation of whole-lung lavage in all patients. The three patients who required oxygen or non-invasive ventilation could be weaned off within 60 days. Liver dysfunction, inflammation, and growth delay also improved or resolved. At a cellular level, methionine supplementation normalised the production of reactive oxygen species by peripheral monocytes.ConclusionMethionine supplementation was associated with important improvements in children with pulmonary alveolar proteinosis related to mutations in the MARS1 gene. This study paves the way for similar strategies for other tRNA synthetase deficiencies.

2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document