scholarly journals To bind or not to bind – how to down-regulate target genes by liganded thyroid hormone receptor?

2008 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Joachim M Weitzel
2008 ◽  
Vol 411 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Kyung-Chul Choi ◽  
So-Young Oh ◽  
Hee-Bum Kang ◽  
Yoo-Hyun Lee ◽  
Seungjoo Haam ◽  
...  

A central issue in mediating repression by nuclear hormone receptors is the distinct or redundant function between co-repressors N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptor). To address the functional relationship between SMRT and N-CoR in TR (thyroid hormone receptor)-mediated repression, we have identified multiple TR target genes, including BCL3 (B-cell lymphoma 3-encoded protein), Spot14 (thyroid hormone-inducible hepatic protein), FAS (fatty acid synthase), and ADRB2 (β-adrenergic receptor 2). We demonstrated that siRNA (small interfering RNA) treatment against either N-CoR or SMRT is sufficient for the de-repression of multiple TR target genes. By the combination of sequence mining and physical association as determined by ChIP (chromatin immunoprecipitation) assays, we mapped the putative TREs (thyroid hormone response elements) in BCL3, Spot14, FAS and ADRB2 genes. Our data clearly show that SMRT and N-CoR are independently recruited to various TR target genes. We also present evidence that overexpression of N-CoR can restore repression of endogenous genes after knocking down SMRT. Finally, unliganded, co-repressor-free TR is defective in repression and interacts with a co-activator, p300. Collectively, these results suggest that both SMRT and N-CoR are limited in cells and that knocking down either of them results in co-repressor-free TR and consequently de-repression of TR target genes.


Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1136-1142 ◽  
Author(s):  
Carmen Grijota-Martínez ◽  
Eric Samarut ◽  
Thomas S. Scanlan ◽  
Beatriz Morte ◽  
Juan Bernal

Thyroid hormone analogs with selective actions through specific thyroid hormone receptor (TR) subtypes are of great interest. They might offer the possibility of mimicking physiological actions of thyroid hormone with receptor subtype or tissue specificity with therapeutic aims. They are also pharmacological tools to dissect biochemical pathways mediated by specific receptor subtypes, in a complementary way to mouse genetic modifications. In this work, we studied the in vivo activity in developing rats of two thyroid hormone agonists, the TRβ-selective GC-24 and the TRα-selective CO23. Our principal goal was to check whether these compounds were active in the rat brain. Analog activity was assessed by measuring the expression of thyroid hormone target genes in liver, heart, and brain, after administration to hypothyroid rats. GC-24 was very selective for TRβ and lacked activity on the brain. On the other hand, CO23 was active in liver, heart, and brain on genes regulated by either TRα or TRβ. This compound, previously shown to be TRα-selective in tadpoles, displayed no selectivity in the rat in vivo.


2008 ◽  
Vol 41 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Anne Wulf ◽  
Marianne G Wetzel ◽  
Maxim Kebenko ◽  
Meike Kröger ◽  
Angelika Harneit ◽  
...  

Thyroid hormone 3,3′,5-tri-iodothyronine (T3) regulates gene expression in a positive and negative manner. Here, we analyzed the regulation of a positively (mitochondrial glycerol-3-phosphate dehydrogenase) and negatively T3-regulated target gene (TSHα). Thyroid hormone receptor (TR) activates mGPDH but not TSH promoter fragments in a mammalian one-hybrid assay. Furthermore, we investigated functional consequences of targeting TR to DNA independent of its own DNA-binding domain (DBD). Using a chimeric fusion protein of the DBD of yeast transcription factor Gal4 with TR, we demonstrated a positive regulation of gene transcription in response to T3. T3-mediated activation of this chimeric protein is further increased after an introduction of point mutations within the DBD of TR. Moreover, we investigated the capacity of TR to negatively regulate gene transcription on a DNA-tethered cofactor platform. A direct binding of TR to DNA via its own DBD is dispensable in this assay. We investigated functional consequences of point mutations affecting different domains of TR. Our data indicate that the DBD of TR plays a key role in direct DNA binding on positively but not on negatively T3-regulated target genes. Nevertheless, the DBD is involved in mediating negative gene regulation independent of its capacity to bind DNA.


2004 ◽  
Vol 24 (20) ◽  
pp. 9026-9037 ◽  
Author(s):  
Daniel R. Buchholz ◽  
Akihiro Tomita ◽  
Liezhen Fu ◽  
Bindu D. Paul ◽  
Yun-Bo Shi

ABSTRACT Thyroid hormone (T3) has long been known to be important for vertebrate development and adult organ function. Whereas thyroid hormone receptor (TR) knockout and transgenic studies of mice have implicated TR involvement in mammalian development, the underlying molecular bases for the resulting phenotypes remain to be determined in vivo, especially considering that T3 is known to have both genomic, i.e., through TRs, and nongenomic effects on cells. Amphibian metamorphosis is an excellent model for studying the role of TR in vertebrate development because of its total dependence on T3. Here we investigated the role of TR in metamorphosis by developing a dominant positive mutant thyroid hormone receptor (dpTR). In the frog oocyte transcription system, dpTR bound a T3-responsive promoter and activated the promoter independently of T3. Transgenic expression of dpTR under the control of a heat shock-inducible promoter in premetamorphic tadpoles led to precocious metamorphic transformations. Molecular analyses showed that dpTR induced metamorphosis by specifically binding to known T3 target genes, leading to increased local histone acetylation and gene activation, similar to T3-bound TR during natural metamorphosis. Our experiments indicated that the metamorphic role of T3 is through genomic action of the hormone, at least on the developmental parameters tested. They further provide the first example where TR is shown to mediate directly and sufficiently these developmental effects of T3 in individual organs by regulating target gene expression in these organs.


2015 ◽  
Vol 96 (8) ◽  
pp. 2889-2895 ◽  
Author(s):  
Thaiane G Gaique ◽  
Bruna P Lopes ◽  
Luana L Souza ◽  
Gabriela S M Paula ◽  
Carmen C Pazos-Moura ◽  
...  

2013 ◽  
Vol 289 (3) ◽  
pp. 1313-1328 ◽  
Author(s):  
Preeti Ramadoss ◽  
Brian J. Abraham ◽  
Linus Tsai ◽  
Yiming Zhou ◽  
Ricardo H. Costa-e-Sousa ◽  
...  

Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.


1991 ◽  
Vol 11 (10) ◽  
pp. 5005-5015
Author(s):  
M A Lazar ◽  
T J Berrodin ◽  
H P Harding

Binding of the thyroid hormone receptor (TR) to thyroid hormone-responsive elements (TREs) is crucial for regulation of gene expression by thyroid hormone. The TR binds to each half-site of a palindromic TRE separately, as a monomer, or simultaneously, as a homodimer. In addition, the TR monomer interacts with a 42-kDa protein that may be responsible for an increase in the apparent size and stability of the TR-TRE complex after incubation with liver nuclear extract. The multiple DNA-binding forms of the TR contact the TRE differently but compete for binding in a dynamic equilibrium which is highly dependent on the relative concentrations of TR and nuclear protein. Thus, protein-protein interactions are likely to determine the context in which the TR binds to target genes and regulates the transcriptional response to thyroid hormone.


2006 ◽  
Vol 4 (1) ◽  
pp. nrs.04020 ◽  
Author(s):  
Lars C. Moeller ◽  
Xia Cao ◽  
Alexandra M. Dumitrescu ◽  
Hisao Seo ◽  
Samuel Refetoff

Thyroid hormone (TH) action is mediated principally through binding of the hormone ligand, 3,3,5-triiodothyronine (T3), to TH receptors (TRs). This hormone-receptor interaction recruits other proteins to form complexes that regulate gene expression by binding to DNA sequences in the promoter of target genes. We recently described an extranuclear mechanism of TH action that consists of the association of TH-liganded TRβ with p85α [regulatory subunit of phosphatidylinositol 3-kinase (PI3K)] in the cytosol and subsequent activation of the PI3K, generating phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3]. This initiates the activation of a signaling cascade by phosphorylation of Akt, mammalian target of rapamycin (mTOR) and its substrate p70S6K, leading to the stimulation of ZAKI-4α synthesis, a calcineurin inhibitor. Furthermore, we found that this same mechanism leads to induction of the transcription factor hypoxia-inducible factor (HIF-1α), and its target genes, glucose transporter (GLUT)1, platelet-type phosphofructokinase (PFKP), and monocarboxylate transporter (MCT) 4. These genes are of special interest, because their products have important roles in cellular glucose metabolism, from glucose uptake (GLUT1) to glycolysis (PFKP) and lactate export (MCT4). These results demonstrate that the TH-TRβ complex can exert a non-genomic action in the cytosol leading to changes in gene expression by direct (HIF-1α) and indirect (ZAKI-4α, GLUT1, PFKP) means.


1991 ◽  
Vol 11 (10) ◽  
pp. 5005-5015 ◽  
Author(s):  
M A Lazar ◽  
T J Berrodin ◽  
H P Harding

Binding of the thyroid hormone receptor (TR) to thyroid hormone-responsive elements (TREs) is crucial for regulation of gene expression by thyroid hormone. The TR binds to each half-site of a palindromic TRE separately, as a monomer, or simultaneously, as a homodimer. In addition, the TR monomer interacts with a 42-kDa protein that may be responsible for an increase in the apparent size and stability of the TR-TRE complex after incubation with liver nuclear extract. The multiple DNA-binding forms of the TR contact the TRE differently but compete for binding in a dynamic equilibrium which is highly dependent on the relative concentrations of TR and nuclear protein. Thus, protein-protein interactions are likely to determine the context in which the TR binds to target genes and regulates the transcriptional response to thyroid hormone.


Sign in / Sign up

Export Citation Format

Share Document