scholarly journals Effect of Thermal Cyclic Loading on Stress-Strain Response and Fatigue Life of 3D Chip Stacking Structure

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Liang Zhang ◽  
Weimin Long ◽  
Sujuan Zhong

AbstractThe thermo-mechanical reliability of IMCs (Ni3Sn4, Cu3Sn, Cu6Sn5) solder joints and Sn-3.9Ag-0.6Cu solder joints was investigated systematically in 3D chip stacking structure subjected to an accelerated thermal cyclic loading based on finite element simulation and Taguchi method. Effects of different control factors, including high temperature, low temperature, dwell time of thermal cyclic loading, and different IMCs on the stress-strain response and fatigue life of solder joints were calculated respectively. The results indicate that maximum stress-strain can be found in the second solder joint on the diagonal of IMC solder joints array; for Sn-3.9Ag-0.6Cu solder joints array, the corner solder joints show the obvious maximum stress-strain, these areas are the crack propagated locations. The stress-strain and fatigue life of solder joints is more sensitive to dwell temperature, especially to high temperature; increasing the high temperature, dwell time, or decreasing the low temperature, can reduce the stress-strain and enlarge the fatigue life of solder joints. Finally, the optimal design in the 3D-IC structure has the combination of the Cu6Sn5/Cu3Sn, 373 K high temperature, 233 K low temperature, and 10 min dwell time. The fatigue lives of Sn-3.9Ag-0.6Cu under 218–398 K loading in the 3D assembly based on the creep strain are 347.4 cycles, which is in good agreement with experimental results (380 cycles).

2020 ◽  
Author(s):  
Liang Zhang ◽  
Su-juan Zhong

Abstract In this paper, the thermo-mechanical reliability of IMCs (Ni3Sn4, Cu3Sn, Cu6Sn5) solder joints and Sn-3.9Ag-0.6Cu solder joints were investigated systematically in 3D chip stacking structure subjected to an accelerated thermal cyclic loading based on finite element simulation and Taguchi method. Effects of different control factors, including high temperature, low temperature, dwell time of thermal cyclic loading, and different IMCs on the stress-strain response and fatigue life of solder joints were calculated respectively. The results indicate that maximum stress-strain can be found in the second solder joint on the diagonal of IMC solder joints array, for Sn-3.9Ag-0.6Cu solder joints array the corner solder joints shows the obvious maximum stress-strain, these areas are the crack propagated locations. The stress-strain and fatigue life of solder joints is more sensitive to dwell temperature, especially to high temperature, increasing the high temperature, dwell time, or decreasing the low temperature, can reduce the stress-strain and enlarge the fatigue life of solder joints. The optimal design in the 3D IC structure has the combination of the Cu6Sn5/Cu3Sn, 373K high temperature, 233K low temperature, and 10min dwell time.


2018 ◽  
Vol 165 ◽  
pp. 15004 ◽  
Author(s):  
Jochen Tenkamp ◽  
Alexander Koch ◽  
Stephan Knorre ◽  
Ulrich Krupp ◽  
Wilhelm Michels ◽  
...  

Aluminium alloys are promising candidates for energy-and cost-efficient components in automotive and aerospace industries, due to their excellent strength-to-weight ratio and relatively low cost compared to titanium alloys. As modern cast processing and post-processing, e.g. hot isostatic pressing, result in decreased frequency and size of defects, the weakest link depends on microstructural characteristics, e.g. secondary dendrite arm spacing (SDAS), Si eutectic morphology and α-Al solid solution hardness. Hereby, fatigue investigations of the effect of the microstructure characteristics on the cyclic stress-strain behaviour as well as fatigue mechanisms in the low cycle and high cycle fatigue regime are performed. For this purpose, samples of the aluminium cast alloy EN AC-AlSi7Mg0.3 with different Si eutectic morphology and α-Al solid solution hardness were investigated. To compare the monotonic and cyclic stress-strain curves, quasistatic tensile tests and incremental step tests were performed on two microstructure conditions. The results show that the cyclic loading leads to a hardening of the material compared to monotonic loading. Based on damage parameter Woehler curves, it is possible to predict the damage progression and fatigue life for monotonic and cyclic loading in hypo-eutectic Al-Si-Mg cast alloys by one power law.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000644-000648
Author(s):  
Mary Liu ◽  
Wusheng Yin

Solder joint encapsulant adhesives have been successfully used to enhance the strength of solder joints and improve thermal cycling as well as drop performance in finished products. The use of solder joint encapsulant adhesives can eliminate the need for underfill materials and the underfill process altogether, thus simplifying rework, which results in a lower cost of ownership. Solder joint encapsulant adhesives include: low temperature and high temperature solder joint encapsulant adhesives, and their derivatives. Each solder joint encapsulant adhesive has: unfilled and filled solder joint encapsulant adhesives, and solder joint encapsulant paste. Each solder joint encapsulant product has been designed for different applications. In this paper, we are going to discuss the details and future of solder joint encapsulant adhesives.


2014 ◽  
Vol 599 ◽  
pp. 110-114 ◽  
Author(s):  
Yan Hua Wang ◽  
Kuang Yi Liu ◽  
Hai Xia Zhang ◽  
Shan Li

Anti-rut agent, named RPS-3000,was added into AC-25 asphalt mixture and its effects on high temperature stability, low temperature cracking resistance, water damage resistance and fatigue life were investigated in this paper. Results showed that the high temperature stability and low temperature crack resistance of the asphalt mixture improved significantly, the water damage stability increase slightly due to the introduction of anti-rut agents. Besides, the result of fatigue life test presented that excess amount of anti-rut agent may lead a deterioration of fatigue life. Keywords: Anti-rut agent; High temperature stability; Asphalt mixture


Author(s):  
Takashi Kawakami ◽  
Takahiro Kinoshita ◽  
Hirokazu Oriyama

Solder joints are sometimes opened under thermal cyclic loads as low cycle fatigue phenomena. The fatigue crack is usually initiated around the edge of the interface where stress and strain very severely concentrate, having stress strain singularity. In this study, Sn-3.0Ag-0.5Cu test pieces with V shape notch were supplied to low cycle fatigue tests at 100°C. And inelastic stress strain simulations, which were based on time-dependent non-unified material model, were carried out under several cyclic load levels to obtain strain distributions around the bottom of the V notch. By results of fatigue test and inelastic simulation, the depth from the bottom of the V notch, where the strain range agrees with the prediction of the fatigue life based on smooth test pieces on Coffin-Manson rule, was investigated as the mechanical design rule for lead free solder joints.


2020 ◽  
Author(s):  
Rashid Geranmayeh Vaneghi ◽  
Arcady V. Dyskin ◽  
Klaus Thoeni ◽  
Mostafa Sharifzadeh ◽  
Mohammad Sarmadivaleh

<p>The detailed study of rock response to cyclic loading induced by natural phenomena, such as seismic and volcanic activities, and man-made explosions and excavation is necessary for failure prediction and hazard mitigation. The effect of the maximum stress level, loading amplitude, and frequency of stress cycles on the fatigue life and failure mechanisms of two microstructurally different rocks of granite/granodiorite and sandstone is investigated. Test data obtained from comprehensive experiments conducted on these rock types incorporated with the results of previous studies show that the fatigue life time of both rock types increases with a decrease in either maximum stress level or stress amplitude. Nevertheless, the fatigue strength threshold of hard rocks like granite is generally lower than that of soft rocks like sandstone. The study also shows that the low-frequency cyclic loading has more damaging effect on both rock types than the high frequency loading. This investigation demonstrates that the failure mechanism of rocks under cyclic loading is characterized by the development of more tensile microcracks compared to the monotonic loading and the opening and extension of the axial tensile microfractures are more evident at higher maximum stresses or loading amplitudes or at lower loading frequencies. The results presented in this study will contribute to a deeper understanding of the fatigue responses of sandstone and granite to seismic-generated loading–unloading processes under different conditions of stress cycles.</p>


Author(s):  
Muhannad Mustafa ◽  
Jordan C. Roberts ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Solder joints in electronic assemblies are typically subjected to thermal cycling, either in actual application or in accelerated life testing used for qualification. Mismatches in the thermal expansion coefficients of the assembly materials cause the solder joints to be subjected to cyclic (positive and negative) mechanical strains and stresses. This cyclic loading leads to thermomechanical fatigue damage that involves damage accumulation, crack initiation, crack propagation, and failure. In addition, the microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal aging and/or thermal cycling environments. While the effects of aging on solder constitutive behavior (stress-strain and creep) have been examined in some detail, there have been no prior studies on the effects of aging on solder failure and fatigue behavior. Aging leads to both grain and phase coarsening, and can cause recrystallization at Sn grain boundaries. Such changes are closely tied to the damage that occurs during cyclic mechanical loading. In this investigation, we have examined the effects of aging on the cyclic stress-strain behavior and fatigue life of lead free solders. Uniaxial solder test specimens (SAC105 and SAC305) have been prepared and subjected to cyclic stress/strain loading at different aging conditions. A four-parameter hyperbolic tangent empirical model has been used to fit the entire cyclic stress-strain curve and the hysteresis loop size (area) was calculated using definite integration for a given strain limit. This area represents the energy dissipated per cycle, which is correlated to the damage accumulation in the joint. Using the recorded cyclic stress-strain curves, the evolution of the solder hysteresis loops with aging have been characterized and empirically modeled. Similar to solder stress-strain and creep behavior, there is a strong effect of aging on the hysteresis loop size (and thus the rate of damage accumulation) in the solder specimens. Fatigue experiments were also performed, where the uniaxial specimens were subjected to cyclic loading over a particular strain range until failure. Fatigue failure in the experiments was defined to occur when there was a 50% peak load drop during mechanical cycling. Prior to testing, the specimens were aged (preconditioned) at 125 °C for various aging times, and then the samples were subjected to cyclic loading at room temperature (25 °C). It was found that aging decreased the mechanical fatigue life, and the effects of aging on the peak load drop have been studied. It has also been observed that degradations in the fatigue/failure behavior of the lead free solders with aging are highly accelerated for lower silver content alloys (e.g., SAC105). Various empirical failure criteria such as the Coffin-Manson model and the Morrow model have been used to fit the measured data, and the parameters in the models have been determined as a function of the aging conditions.


Sign in / Sign up

Export Citation Format

Share Document